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Abstract 
 
In his Presidential Address to the European Economic Association, Tony Atkinson 
introduced the idea of a “Charitable Conservatism” position in public policy, which 
“exhibits a degree of concern for the poor, but this is the limit of the redistributional 
concern and there is indifference with respect to transfers above the poverty line.” This 
contrasts with the perspective of poverty indices, which give zero weight to those above the 
poverty line, which we call “Poverty Radicalism,” and with standard “Inequality Aversion” 
where the weights decline smoothly as we move up the income scale. The object of this 
paper is, first, to clarify the interrelationships between Charitable Conservatism, Poverty 
Radicalism and Inequality Aversion. We do this by showing how the patterns of welfare 
weights to which each of these gives rise are related to each other. Secondly, we are 
concerned to demonstrate the implications of these different views for optimal income 
taxation. In terms of levels and patterns of marginal tax rates, we show that Charitable 
Conservatism and Poverty Radicalism are on a continuum, and by choice of low or high 
Inequality Aversion one can approximate either outcome fairly well.   
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1. Introduction 
 
The Bergson-Samuelson social welfare function, expressing social welfare as a function of 

individual utilities, has been the workhorse of welfare economics since its introduction. Its 

special parametrisations have proved particularly fruitful in the analysis of optimal 

taxation. For example, much use has been made of functional forms where the social 

marginal utility of income falls smoothly as income rises. Indeed choice of this pattern of 

welfare weights, capturing "inequality aversion", may be described as the currently 

accepted practice. Of course, the rate at which welfare weights fall, the magnitude of 

inequality aversion, is still a matter of choice. Several parametrisations exist which permit 

convenient representation of the degree of inequality aversion, for example, the "constant 

elasticity" class of functions, and these have been used extensively. 

 
The "smoothly falling welfare weights" class of social welfare functions have thus long 

dominated the analysis of optimal taxation. However, in recent years at least two 

alternatives have been suggested as capturing better certain classes of value judgements. 

The first of these is to be found in the growing literature on poverty indices. Starting with 

Sen (1976), the literature consciously gives a zero social marginal utility to incomes above 

a critical level ("the poverty line"), thus allowing a focus on incomes below this level. Sen 

(1976) codified this as the "focus axiom", and it is formalised in terms of welfare weights 

by Atkinson (1987). This alternative has not been without its critics. Stern (1987), in a 

defence of standard parametrizations, expresses dissatisfaction with poverty indices 

because welfare weights fall to zero (and may do so discontinuously for some indices) at 

the poverty line. It is argued that this is too extreme; it can be avoided by using standard 

parametrizations and letting the degree of inequality aversion increase, which gives greater 

and greater weight to the poor, while ensuring that (i) weights fall smoothly and (ii) they do 

not fall to zero at a finite value of income. 

 

Forcing welfare weights to fall to zero well before the highest incomes are reached may 

indeed be considered extreme relative to the standard inequality aversion. We will refer to 

it as "Poverty Radicalism"; some among us find it appealing. But another alternative to the 

standard view has been discussed by Atkinson (1990) in his Presidential Address to the 
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European Economic Association - this time an alternative not in the Radical but in the 

Conservative direction.  He reasons as follows: 

 
"It may be that complete distributional indifference characterises the social welfare 

function of some Conservative governments, but there is a more charitable position, which 

believes that the government should be concerned with poverty but not with redistribution. 

This charitable conservative position exhibits a degree of concern for the poor, but this is 

the limit of the redistributional concern and there is indifference with respect to transfers 

between those above the poverty line". 

 

Thus, in Atkinson's (1990) characterisation of "Charitable Conservatism", the welfare 

weights are constant at a high level for all incomes below the poverty line, they then fall 

(discontinuously) to a low level at the poverty line, whence forth they are constant at this 

low level. 

 

The weights pattern described above is of course equally open to Stern's (1987) criticisms 

levelled at poverty indices. The weights characterising Charitable Conservatism fall 

discontinuously at the poverty line and are constant thereafter. At the same time, the only 

difference between Poverty Radicalism and Charitable Conservatism seems to be the 

magnitude of the weight given to above the poverty line incomes - the pattern of the 

weights (constancy) is the same for both.      

 
It has to be said that the conventional inequality aversion view has a certain advantages. It 

avoids the discomfort of discontinuous changes in weights. It has a pleasing unity and 

flexibility as captured by the inequality aversion parameter. Can the Poverty Radicalism 

and Charitable Conservatism views not be accommodated simply by increasing or 

decreasing the degree of inequality aversion, without having to resort to such severe 

departures? And what difference does it make which view one holds? In particular, does it 

make a huge difference where it counts - in the pattern of optimal taxation to which each 

system of weights gives rise? It is the object of this paper to attempt an answer to these 

questions. 
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The plan of this paper is as follows. Section 2 presents a formalisation and discussion of the 

three types of welfare weight patterns. Section 3 sets up the basic optimal income taxation 

model and then moves to a presentation of numerical results. Section 4 concludes.  

 
2.  Alternative Patterns of Welfare Weights 
 
Let the social valuation of an individual's wage n be denoted ψ(n), and let social welfare2

0

( ) ( )S n f n dnψ
∞

= ∫

 

be 

 (1)         

where f(n) is density of n and the integration is over the range of n. It is natural to suppose 

that ψ is increasing in n, and a representation of egalitarianism is to make ψ concave in n. 

For differentiable functions we can say equivalently that ψ'(n) is decreasing in n. With this 

notation, one definition of a welfare weight for unit change in income is simply: 

 (2)        '( )( )
'( )
nn

E n
ψϕ
ψ

=  

 

where E denotes the expectation operator. The interpretation is that a unit increment in n 

leads to an increase in social valuation of ψ'(n). But to get the value of this in terms of 

income requires normalisation. One natural procedure is to normalise by the average of 

ψ'(n) in the population. Put another way, φ(n) measures the social value of giving a unit of 

income to an individual with income n, relative to the social value of dividing it equally 

among all individuals. 

 

Not surprisingly, the behaviour of the function φ(n) is an important determinant of the 

pattern of optimal taxation. Focussing on this function will also allow us to clarify the 

differences between Charitable Conservatism, Poverty Radicalism, and Good Old 

Fashioned Inequality Aversion. Let us start with a conventional representation of ψ(n) as a 

"constant inequality aversion" function: 

 

                                                 
2 If social welfare is strictly a function of individual utility, then ψ’(n)  depends on u(n). This dependence 
complicates the analysis. We return to this in the context of numerical simulations. Now (1) may be described 
as ’non-welfarist’. In fact this is implicit in a number of approaches to measuring inequality. 
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 (3)      

1
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1
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β

ψ β
β

−

= ≠
−  

                    ln( ), 1n β= =   

where β is the measure of inequality aversion. Then  

 (4)      ( )
( )
nn

E n

β

βϕ
−

−= . 

For example, when 2( , )n µ σΛ , i.e., a lognormal distribution with parameters μ and  σ2, 

then 

 (5)      2( ) exp[ ( 0.5 )]n n βϕ µ σ −= − +  

 
This pattern of "smoothly declining" welfare weights is shown in Figure 1. Clearly the 

weights are above 1 when n is low, and below 1 when n is high, the switch over point 

occurring when n reaches the (-β)th order geometric mean of f(n). This point is denoted sn . 

Figure 1 Good old fashioned inequality aversion
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Suppose now that there is a critical value of income, npov , known as the "poverty line". The 

reason why this value of income is critical depends on the behaviour of the valuation 

function, and therefore the welfare weights. We suppose that npov is less than sn  . 
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Atkinson's (1990) representation of Charitable Conservatism is shown in Figure 2. As can 

be seen, the weights jump to a lower value at npov.. Formally, we can write 

 (6)       (1 ) 1c
pov c povN N

k
ϕϕ− + =  

where povN  is a fraction of people who are below the poverty line and k is an indicator of 

the degree of concern for those below the poverty line. 

Figure 2 Charitable conservatism
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Finally, consider the implicit weights in the Foster, Greer and Thorbecke (1984) class of 

poverty indices, which require: 

 (7)      
( )

( ) [ ] ;pov
pov

pov

n n
n n n

n
αψ

−
= − ≤  

                       0; povn n= >  

 
The weights are thus: 

 (8)     
1{ [( ) / ] / }

( ) ;
'( )

pov pov pov
pov

n n n n
n n n

E n

αα
ϕ

ψ

−−
= ≤  

                     0 : povn n= >  

  
These weights are plotted for α = 1 in Figure 3. It will be seen that the weight pattern is the 

same as the Charitable Conservative case. The only difference is that the poverty index 
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gives a weight of zero to those above the poverty line and a rather higher weight to those 

below. 

 

One feature of both sets of weights, in Figures 2 and 3, is the discontinuity at npov . Stern 

(1987) criticises this in the context of poverty indices, but the criticism is equally 

applicable to Atkinson's Charitable Conservatism representation; and it has to be said that 

widely different weights for incomes which are infinitesimally apart are difficult to justify. 

In fact, in the case of the poverty index in (8) this can be remedied by choosing α > 1. For 

example, when α  = 2 we get a pattern as shown in Figure 4. The weighting function is now 

continuous, although it may be objected that it is non-differentiable at npov. This is also 

taken care of when α  > 2. 

Figure 3  Poverty radicalism
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Figure 4 Modified Poverty radicalism
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But what of the Charitable Conservative position? There seems to be no way of avoiding 

discontinuity within the terms of Atkinson's definition. But suppose in fact that we were to 

modify this definition. Suppose that we imposed only, the requirement that after npov  the 

weights should remain constant at their value at npov . In order to ensure that the weights 

sum to one their values below npov  will have to be somewhat higher. Modify the poverty 

valuation function (7) as follows: 

 (9)               
( )

( ) [ ] ;pov
pov

pov

n n
n kn n n

n
αψ

−
= − ≤  

                      ; povkn n n= >  

Thus 
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                       ; povk n n= >  
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This weight pattern is shown in Figure 5 for α = 2. Comparing Figure 5 with Figure 4 

shows how different values of k can convert Charitable Conservatism to Poverty 

Radicalism! In fact, when α = 1 the weight pattern in (10) generates the discontinuous 

shape of Figure 2 for k > 0, and Figure 3 for k = 0, showing again that the parameter k is 

key in distinguishing between Conservatism and Radicalism. If it is required that the 

weights be differentiable, a value α  > 2 will suffice. 

Figure 5 Modified Charitable conservatism
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The above discussion of welfare weights serves to anchor Charitable Conservatism, 

Poverty Radicalism and Good Old Fashioned Inequality Aversion in a common framework. 

But how different are these three in terms of their implications for optimal income taxation 

policy? 

 
3.  Implications for Optimal Income Taxation 
 
3.1  Basic model 
  
We follow the Mirrlees (1971) model of optimal income taxation. There are a continuum of 

taxpayers, each having the same preference ordering, which is represented by a utility 

function ( ) ( )u U x V y= −  defined over consumption x and hours worked y, with 0xU >  
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and 0yV <  (subscripts indicating partial derivatives). Individuals differ only in the pre-tax 

wage n they can earn. There is a distribution of n on the interval (0, )∞  represented by the 

density function f(n). Gross income is z = ny. 

 
Each n individual maximises utility by choice of hours worked, solving 

 (12)      ,max ( ) ( )x y u U x V y= −   subject to ( )x ny T ny= − , 

where ( )T ny  is the tax schedule.          

                                                                   

Suppose that the aim of policy can be expressed as maximizing the following social welfare 

criterion 

 (13)        
0

( ( )) ( )S u n f n dnψ
∞

= ∫                                                                                      

where ψ(.) is an increasing and concave function of utility. The government cannot observe 

individuals’ productivities and thus is restricted to setting taxes and transfers as a function 

only of earnings, ( ( ))T z n . The government maximizes S subject to the revenue constraint 

  (14)            
0

( ( )) ( )T z n f n dn R
∞

=∫                                                                                 

where in the Mirrlees tradition R is interpreted as the required revenue for essential public 

goods. The more non-tax revenue a government receives from external sources, the lower 

is R. In addition to the revenue constraint, the government faces incentive compatibility 

constraints. These in turn state that each n individual maximizes utility by choice of hour.           

 

Totally differentiating utility with respect to n , and making use of workers’ utility 

maximization condition, we obtain the incentive compatibility constraints, 

    (15)              ( , )yyVdu g u y
dn n

= − = .3

                                                 
3 The 1.order condition of individual’s optimisation problem is only a necessary condition for the individual's 
choice to be optimal, but we assume here that it is sufficient as well. Assumptions that assure sufficiency are 
provided by Mirrlees (1976). Note also that while we here presume an internal solution for y, (6) remains valid 
even if individuals were bunched at y=0 since, for them, du/dn=0. 
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Since T ny x= − , we can think of government as choosing schedules  )(nx  and )(ny . In fact 

it is easier to think of it choosing a pair of functions, )(nu and )(ny , which maximize welfare 

index (13) subject to the revenue requirement (14), the incentive compatibility condition (15) 

Introducing Lagrange multipliers λ, α(n)  for the constraints (14) and (15) and integrating by 

parts, the Lagrangean becomes 

 (16) 
0

[ ( ) ( )) ( ) ' ] ( ) ( ) (0 )(0 )L W u ny x f n u g dn u uλ α α α α
∞

= + − − − + ∞ ∞ −∫   

Differentiating with respect to u and y gives the first-order conditions4

[ ' )] ( ) '( ) 0u uL W h f n nλ α= − − =

   

 (17)   

     (18)      ( ) ( ) ( )( ) 0y y y yyL n h f n n V yVλ α= − + + =               

Integrating in (17) 

   (19)      ( ) [ ' ] ( )
xn

n f p dp
u
λα ψ

∞

= −∫  

This latter satisfies the transversality conditions ( ) ( ) 0oα α= ∞ =   
 

From the first order conditions of government’s maximization, we obtain the following 

condition for the optimal marginal tax rate ( ) '( )t z T z= ; [Note: 1 1 1
1 1

x

Y

U nt
t t V
= − = −

− −
 ] 

   (20)      (1 ) [ '] ( )
1 ( )

yy x

y xn

yV Ut f p dp
t V nf n U

λ ψ
λ

∞

= + −
− ∫                                             

Multiplying and dividing (20) by (1 ( ))F n− we can to write the formula for marginal rates;                         

                                                                                                           

 (21)  [ ]
( )

( )
' 1[1 ]( ) ( )

1 ( )1
1 ( ) (1 ( ))

n n

n

p
x

x pu
xn

c

A B

C

UU f p dp
F n Ut E

t E nf n F n

ψ
λ

∞ 
−  − +  =     − −     

 

∫






                                                      

where uE  is the uncompensated supply of labour and cE  in turn is the compensated 

elasticity. It should be clear from (21) that the variation of the optimal marginal tax rate 

                                                 
4 ( , )x h u y=  
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with the level of income is a complex matter.  Applying (21) it appears that there are four 

elements on the right hand side of (21) that determine optimum tax rates: elasticity and 

income effects (A&C), the shape of the skill distribution (B&C) and social marginal weights 

(C). The C-term in (21) tends to favour rising marginal rates. This is so especially when 

income is low or moderate. 

 

We may omit income effects in the labour supply by considering quasi-linear preferences in 

consumption. This special case is extensively used in both theoretical and applied optimal tax 

literature. Then it is possible to deduce on the basis of (21) that with Pareto distributions 

marginal tax rates rise with income at high levels of income. Once we allow income effects 

the analysis is more complicated. The optimal marginal tax rates in more general cases, as in 

(21), become considerably more difficult to interpret because labour supply can vary with skill 

and because of income effects. The quasi-linear assumption is also restrictive because it 

eliminates declining marginal utility of consumption (utility is linear in x), which is a key 

motivation for redistribution. 

 

It is clear that explicit solutions to the optimal income tax problem are difficult to obtain 

without simplifying assumptions. The terms in (21) simplify if we assume quasi-linear 

preferences with constant the elasticity of labour, 1xU =  , the marginal tax rate formula is 

 

 (22) [ ] [1 ] ( )
1 ( )11

1 ( ) (1 ( ))
n

n

n

n
c

A B

C

f p dp
F nt

t E nf n F n

ϕ
∞ 

−  −   = +     − −     
 

∫







                                                                  

In the case of the unbounded Pareto distribution, 1

1( ) af n
n +=  for a>0,  1 ( ) 1

( )
F n

nf n a
−

=   is 

constant. Hence, the optimal marginal tax rate depends only C. In the classical utilitarian 

case φ is constant for all n, then the marginal tax rates are uniformly zero. 
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3.2 Some Special Cases 

 

If we assume the Rawlsian social objective5

1 1 ( )1
1 ( )

n n

c

A B

t F n
t E nf n

 − = +   −    




 then the factor Cn is constant and when Ux=1. 

then the pattern of marginal tax rates depends only on B, that is, on the shape of the n-

distribution. The distribution of n plays a major role in determining the optimal tax 

 

 (23)                                                                                          

We specify further the case with a maximin criterion so that the upper part of the n-

distribution is the unbounded Pareto distribution and the utility function is 
11

u x y ε
+

= − .      

( cE ε= ) 

 

then  

 (24)    1 11
1

t
t aε

 = + −  
                                                                                        

 

Hence using the Rawlsian social welfare function we do not obtain the rising part of the U-

shaped marginal tax rates as in Diamond (1998).6

(1 )cϕ−

 As expected, the optimal top marginal 

tax rate is increasing in φ and decreasing in є. It also depends negatively on a, which is a 

measure of the thinness of the tail of the n-distribution. 

 

If we take a charitable conservative position we know from (6) that the last term in (23) is 

equal to . It can be calculated when we know k and Npov. The optimal tax formula 

becomes 

                                                 
5 Maximizing utility of worst off person in the society is not the original version of Rawls (1972). It is a kind 
of welfarist version of Rawls. “To interpret the difference principle as the principle of maximin utility (the 
principle to maximize the well-being of the least advantaged person) is a serious misunderstanding from a 
philosophical standpoint.” Rawls, 1982). 
6 In the general additive case with maximin  C is ( ( ) / )xf p u dp∫ . It is declining with n since u(x) is 

concave and the intergral term declines in n. This might suggest declining marginal rates. See also Boadway-
Jacquet, 2008. 
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 (25)    (1 )11
1

ct
t a

ϕ
ε

− = + −  
 

Table 1 illustrates with some parameter values top marginal rates in Rawlsian and 

charitable conservative cases. 

 

Table 1 - Rawlsian and charitable conservative top marginal tax rates 
    

Pareto 

parameter 

Elasticity 

є 

marginal tax rates 

%  Rawls 

marginal tax rates % 

Charitable 

conservative (k=1/3) 

a=3 0.25 62,5 45.4 

 0.5 50 33.3 

 1 40 25 

 
 
It is of interest to note that if the Pareto distribution applies over the whole range of n, the 

optimal marginal tax rate is increasing up to the poverty line. The importance of the result 

underlines the fact that the fit of Pareto distribution over the whole range of income turns 

out to be quite poor. 

 

The results in Table 1 depend on the chosen distribution of wages. Next we replace a 

Pareto distribution by the Champernowne distribution.  As commonly known the 

lognormal distribution fits reasonable well over a large part of income range but diverges 

markedly at the both tails. The Pareto distribution in turn fits well at the upper tail. 

Champernowne (1952) proposes a model in which individual incomes were assumed to 

follow a random walk in the logarithmic scale. Here we use the two parameter version of 

the Champernowne distribution. This distribution approaches asymptotically a form of the 

Pareto distribution for large values of wages but it also has an interior maximum.  As the 

lognormal, the Champernowne distribution exhibits the following features: asymmetry, a 

left humpback and long right-hand tail. But it has a thicker upper tail than in the lognormal 

case.  
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The probability density function of the Champernowne distribution is given by 

 (26)   )
)(

()( 2

1

θθ

θθ

µ
µθ

n
nnf
+

=
−

                                                                                                  

in which θ is a shape parameter and μ is a scale parameter. The cumulative distribution 

function is 

 (27)    
)(

1)( θθ

θ

µ
µ

n
nF

+
−=  .  

For the distribution ratio 

 (28)     
θθ

µ
θ

θθ 1lim
)(
)(1lim →

+
=

−
∞→∞→ n

n
nnf
nF

nn .                                                                 

 

Eq (28) shows that the Champernowne distribution approaches asymptotically a form of 

Pareto distribution for large values of wages. 

 

Calculating the ratio 1 ( )
( )

F n
nf n
− with different parameter values of μ and θ we obtain the 

marginal tax rates with different social objectives. 

 
Table 2 - Optimal marginal tax rates with social objectives (Rawlsian, Poverty 
Radicalism, Charitable Conservatism) and the Champernowne distribution 
(Npov=0.15, є=0.3) 
 
 
F(n) Rawlsian Rawlsian k=0.01 k=0.01 k=0.25 k=0.25 k=0.5 k=0.5 
 θ=2 θ=3 θ=2 θ=3 θ=2 θ=3 θ=2 θ=3 
0.15 94.7 93.3 94.4 93 84.8 81.4 69.9 64.7 
0.20 91.5 85.9 91 85.1 76.9 65.4 58.3 44.2 
0.50 81.2 74.1 80.2 72.8 57.2 47 35.9 27.1 
0.75 79.8 66.1 73.2 64.7 47 37.7 27.1 20.2 
0.90 70.4 61.4 69.1 60 42.5 33 23.6 17.1 
0.95 69.2 60 67.9 58.4 41.1 31.8 22.6 16.3 
0.99 67 58.2 65.6 56.6 38.7 30.1 21 15.3 
0.999 58.7 52.2 57.1 50.5 30.7 25.6 15.6 12.4 
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Note that the marginal tax rates in different cases are far from zero for the top 0.1 per cent. 

These results help to show how misleading is the result that the marginal tax rate should be 

zero at the top when there is an upper bound to possible incomes. 

 
3.3 Numerical Simulations 
 
In more general settings, as is often the case in non-linear optimal taxation analysis, we 

have to rely on numerical simulations and we now turn to these. The calculations were 

carried out for the case  

 (29)      1 1
1

u
x y

= − −
−

 

 
where the elasticity of substitution between consumption and leisure is 0.5. The variable n 

is taken to be distributed according to a lognormal distribution, with the mean of the 

logarithm of n being -1 and its standard deviation 0.4. The assumption about government 

revenue as a share of national income (g) is about 10 percent. It is assumed to be spent on 

public goods in a way that does not affect the rest of the model. 

 
In the previous section a very special case for Charitable Conservatism was chosen so that 

the private social marginal utility of income was constant.  With the utility function (29) it 

depends on consumption and the relation with n is not too obvious. In other words now 

ψ’(n) depends on u(n). 

 
Let us consider first of all the level of the marginal tax rate schedule. It is seen in Figure 6 

that Inequality Aversion with β = 2 is a half-way house between modified Charitable 

Conservatism and Poverty Radicalism at least in the specifications that we have used. In 

fact, other calculations (not reported here), show that increasing β  by small amounts above 

2 does not change tax rates by much, but increasing β  to infinity i.e. approaching the 

maximin solution, does bring the resulting optimal schedule closer to that of Poverty 

Radicalism. Notice also that the pattern of marginal tax rates is fairly similar - they decline 

as income increases - no matter which pattern of welfare weights is used. The guaranteed 
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income x(no) is higher in Inequality Aversion and modified Poverty Radicalism cases than 

in modified Charitable Conservatism case. 

 
Figure 6 - Marginal tax rates 
 

 
 
 

 

Modified Charitable Conservatism (x(no) = 0.08, g = 0.1, σ = 0.4) [with a chosen poverty 

cut off at n = npov so that F(npov)=0.38 and a pattern of weights as in Figure 5] 

Inequality Aversion (β = 2) (x(n0) =.13,  g =.1 , σ  =.4) 

Modified Poverty Radicalism ( x(no) = 0.127   g = 0.1  σ  = 0.4) [with a chosen poverty 

cut off at n = npov so that F(npov)=0.27 as depicted in Figure 4 and equation (9) with k = 0] 

                  
Figures 7 and 8 display marginal tax rates for Charitable conservative position in case with 

k=1/3 and 4/5. It is interesting to note that the marginal tax rates are increasing around up 

to the poverty line. As we noted earlier in more special case if the Pareto distribution holds 

throughout the range of n the marginal tax rates are increasing up to the poverty line. Now 
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things are more complicated in this more general setting with income effects. As noted in 

the context of (21) the C-term tends to favour rising marginal rates when income is low. 

xU  has also a central role in the term C. Income effects are related to the concavity of the 

utility of consumption as people are willing to work more when after tax income is lower. In 

the Charitable conservative case this means that the weights ' xUψ  is decreasing both below 

and above poverty line and the weights jump to a lower value at npov.. This suggests that this 

effect through ' xUψ  with relative low k, the utility function (29) and lognormal n-distribution 

leads   increasing marginal rates below the poverty line.     

 
Figure 7 - Charitable conservatism; k=1/3 
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Figure 8 - Charitable conservatism, k=4/5 
 

 
 
4.  Conclusion 
 
The object of this paper has been, first, to clarify the interrelationships between Charitable 

Conservatism, Poverty Radicalism and Inequality Aversion. We have done this by showing 

how the patterns of welfare weights to which each of these gives rise are related to each 

other. Secondly, we have been concerned to demonstrate the implications of these different 

views for optimal income taxation. In terms of levels and patterns of marginal tax rates, 

modified Charitable Conservatism and Poverty Radicalism are on a continuum - at least in 

specifications we have used, and we would argue these to be the reasonable ones to choose 

- and by choice of low or high Inequality Aversion one can approximate either outcome 

fairly well. There would thus appear to be no fundamental qualitative difference between 

these three seemingly very different perspectives so far as their policy consequences are 

concerned. The difference, rather, is one of degree. 
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