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Do Investors Learn about Analyst Accuracy?  
 
 
 
 

ABSTRACT 

We study the impact of analyst forecasts on prices to determine whether 
investors learn about analyst accuracy.  Our test market is the crude oil 
futures market.  Prices rise when analysts forecast a decrease (increase) in 
crude supplies.  In the 15 minutes following supply realizations, prices rise 
(fall) when forecasts have been too high (low).  In both the initial price 
action relative to forecasts and in the subsequent reaction relative to 
realized forecast errors, the price response is stronger for more accurate 
analysts.  These price reactions imply that investors learn about analyst 
accuracy and trade accordingly. 
 

 



 

 Our study seeks to investigate the impact of financial analysts’ forecasts on asset 

prices. In addition, we explore investors’ ability to learn about analyst performance and 

adjust their trading accordingly. Specifically, we address whether the market reacts to 

analyst information, whether analyst forecast error affects price, and whether the market 

learns over time which analysts are most accurate. If the answer is negative, one might 

question whether analyst performance is important from the firm’s perspective. Why spend 

good money maintaining strong analysts if the market fails to react to them and your 

investors do not learn or care about their accuracy? Several studies of equity market 

analysts discuss analyst forecast accuracy. However, equity analysts must study a variety 

of stocks and a variety of factors that impact price, making it difficult to compare the 

informational advantages of one analyst to those of another. Furthermore, equity studies 

executed at the daily (or longer) horizon potentially admit confounding information events. 

Many stocks are also difficult or impossible to short sell, potentially skewing return 

studies. We select as our test setting the crude oil futures market. The crude oil futures 

market centers around a single underlying asset that all analysts seek to forecast. In 

addition, crude prices are principally determined by supply and demand, making analyst 

supply forecasts directly relevant. Our data allows us to investigate price movements 

immediately following information release thus drastically reducing the likelihood of 

confounding events. Finally, oil futures may be shorted without additional costs, and 

because of the economic size of this market and its unprecedented activity in recent years, 

financial analysts’ forecasts of oil supply (and hence equilibrium price) may have a 

substantial economic impact. In this simpler but economically important setting, we find 

that analyst supply forecasts have an impact on the price of crude oil products. Price 
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significantly reflects forecast errors and does so within 15 minutes following the 

announcement of true supply. This impact overrides that which arises from the supply 

announcement itself. We also find that more accurate analysts generate a larger reaction, 

inducing larger price movements in response to forecasts and larger corrections when 

forecast errors are realized. In essence, we find that information generated by analysts is 

important to price determination and that the market seems to learn which analysts are best. 

Much empirical work has been aimed at examining the sensitivity of markets to 

analyst forecasts and forecast errors. Post-announcement price drift is well documented in 

the earnings literature. Kanungo (2004) finds that stock prices are more reactive to forecast 

errors than to earnings themselves. Stickel (1992) further finds that those analysts with the 

best ex-ante reputations have the largest market impact. In his paper, he concludes that 

market participants know the identities of the best analysts and respond accordingly. 

However, he finds that this is only true in upward revisions and not in downward ones, 

perhaps owing to transactional difficulties in shorting. Sorescu and Subrahmanyam (2004) 

similarly find that more experienced analysts receive the largest price reactions, 

particularly in the long-run, whereas Chen, Francis, and Jiang (2005) determine that both 

the accuracy of earnings forecasts and length of track record increase market reactivity 

though that study focuses on first-time analysts. Mikhail, Walther, and Willis (2001), on 

the other hand, find the opposite. Splitting firms up by coverage, they find that firms 

covered by more accurate, more experienced analysts show less pronounced 

post-announcement drift. In work related to commodities, Athanassakos and Kalimipalli 

(2004) study the smaller, less liquid, natural gas storage market and find that market 

participants recognize differences in ability among gas analysts and hence place more 
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emphasis on lead analysts than on other analysts or on the consensus. In summary, though 

post-announcement drift is well documented, the issue of whether investors learn about the 

accuracy of analysts elicits less agreement.  

In our more straight-forward test market, we find that prices react significantly to 

forecasts in the period before true supply is announced. We further find that, when true 

supply (and hence forecast error) is revealed, prices adjust immediately, principally within 

the first 15 minutes following the announcement. These effects are more significant than 

reactions to the supply announcement itself. We then measure the sensitivity of prices to 

each individual analyst and find that the reaction is larger for firms with higher past 

accuracy, implying that the market adjusts its reaction to analyst forecasts based on past 

performance. In other words, investors learn which forecasts to follow. 

 The remainder of this paper is organized as follows: Section I describes our 

datasets. Section II proposes an empirical methodology and results. Section III addresses 

robustness checks, and Section IV concludes. 

 

I. Data and Markets 

Data for this study comes from two sources: price and transaction data is obtained 

from Olsen Data & Associates, and Department of Energy (DOE) supply reports and 

analyst forecasts are manually collected from Bloomberg. Our data is collected on a 

weekly basis and our study spans the period from June 2003 to March 2005, resulting in a 

total time series of 96 weeks. 

I.A Olsen Data 

The specific asset used to measure oil prices is the Light Sweet Crude futures 
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contract traded on NYMEX (ticker: CL).1  This is the largest, most liquid, and most 

price-transparent contract traded on physical commodities. Traded at a nominal contract 

size of 1,000 barrels, CL provides for either physical or cash settlement and is more liquid 

and more easily traded than crude oil itself. Bid-ask spreads are 2.5 cents (or roughly 5 

bp).2 Olsen Data & Associates provides transaction data including time (by second) and 

price for a variety of contract maturities of CL. The specificity of the time stamp allows us 

to match weekly forecast errors with trading surrounding the DOE supply change 

announcement. We consider here only the contract with the closest expiration, that is the 

near-term future, because it exhibits nearly twice the trading activity of farther-term 

contracts.3 Furthermore, the near-term contract also embeds the least interest rate risk as it 

has the shortest duration.  

I.B Supply and Forecast Data 

We collect our supply and forecast data from Bloomberg, which records the DOE’s 

“Weekly Petroleum Status Report” (WPSR) when it is released at 10:30 AM each 

Wednesday. 4  This report is prepared by the Energy Information Administration and 

includes a detailed summary of the supply of petroleum products in the United States 

measured in millions of barrels, both in commercial inventories and the Strategic 

Petroleum Reserves (SPR). The focus of analyst forecasts, and hence of this study, is on the 

former. WPSR supplies are calculated by the DOE based on representative supply, product 

stock, process input, and production numbers collected from selected petroleum 

companies.5 For the purposes of our study, we assume the WPSR to deliver an accurate 

measure of supply and will henceforth refer to WPSR supplies as “actual”. Analysts’ 

forecasted supply changes are likewise manually collected from Bloomberg and verified 
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for accuracy. Though most forecasts are finalized and released early in the week, to ensure 

the freshness and consistency of these forecasts at the time of forecast error calculation, we 

record them as of 10 A.M. on Wednesday.  

In all, we investigate forecasts of supply changes in crude oil, gasoline, and 

distillates (petrochemicals such as heating oil, certain plastics, etc.) from 17 financial 

institutions. Crude oil consists of a mixture of substances which must be separated in order 

to become useful products such as gasoline and heating oil. As such, crude oil prices may 

be closely related to the supplies of its refined products. For example, when gasoline 

supplies are low, the market may foresee excess demand for crude derived from strong 

demand from down-stream producers of gasoline. This prompts investors to drive up the 

price of crude. Hence, we test price effects resulting from crude oil alone as well as those 

resulting from the cumulative effects of crude oil, gasoline, and distillates. Virtually all 

analysts in our data set provide forecasts for all three supplies.  

Figure 1 illustrates the historic supply levels of the three separately and in 

aggregate, scaled to 6/1/2003 levels.  It also shows the relationship between these supplies 

and the price of CL. Note that each of the three supplies is negatively correlated with CL, 

as would be expected from simple economic arguments (supply increases, prices fall). 

Their sum is also negatively correlated to CL, a fact that is expounded upon in Figure 2. 

We also find that crude oil supplies are negatively correlated with the supplies of both 

gasoline and distillates, which is sensible since crude oil must be processed (consumed) in 

order to produce gasoline and distillates.  

For a clearer picture as to what drives returns, we evaluate the following regression 

in which forecast error (FE) is the forecasted change in supply minus the actual change in 
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supply: 

, ,i tt i gov tot tr FE Gα β β= + + +ε   (1) 

We regress returns on forecast errors measured relative to the mean forecast ( FE )6 

of supply i (crude, gasoline, distillates, and the sum of the three) and while controlling for 

aggregate supply change (Gtot). The β’s in this regression describe price reactivity to 

forecast error. We speculate that these coefficients are positive. For example, suppose 

analysts forecast +1000 barrels of supply change. The market should note the increase in 

supply and reduce prices. Suppose then that the true supply is revealed to have zero change 

in supply, yielding FE=1000. Prices, having already reacted to forecasts, should rise back 

to pre-forecast levels. Hence, the relationship between returns and FE would be positive. 

Because of the liquidity afforded in this market, we posit that the price reaction to FE 

should be nearly immediate. As can be seen in the graph presented in Figure 2, oil prices 

react significantly to supply forecast errors and do so in a relatively short window of time 

following the DOE announcement. There is very little return activity before the event 

window and, following this initial jump, subsequent price movements do not seem to 

reverse the initial reaction—returns are relatively flat for the rest of the trading day. As 

such, we define “immediate return” (r) as the return between 10:25 AM and 10:45 AM, 

encompassing the announcement time and a short period after. This short window suffices 

to capture the lion’s share of returns that occurs as a result of forecast error while 

substantially reducing the likelihood of other confounding events occurring within the 

event window. The timing of events, then, is: 
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 Immediate return (r) window

10:45AM 10:30AM 10:00AM 10:25AM 

Forecast recorded DOE supply reported, forecast 
error (FE) recorded 

The test results presented in Figure 2 confirm our initial intuition that prices are 

significantly related to forecast error. We find that coefficients are positive and significant 

for crude, gasoline, and distillates, implying that returns are higher (lower) when supplies 

are lower (higher) than expected. Importantly, these effects seem not to be overlapping, 

indicating that gasoline and distillate supplies deliver additional information regarding 

crude oil prices over-and-above that which is communicated by crude alone. R-squared is 

nearly three times as high when looking at the sum of all three supplies compared to crude 

oil alone. Because of this, results in the paper will focus on the aggregate forecast error for 

the three supplies FEtot. Also, note that oil returns react to forecast errors and not to the 

actual supply change itself. βgov is not significant and the inclusion of actual change in 

supply does not provide additional explanatory power to our regression. 

Summary statistics on supply changes and analyst forecast errors appear in Figures 

3 and 4. We calculate these statistics for both the change in number of barrels and the 

percent change in total inventory. Regardless of the measure used, forecast errors appear to 

be close to Normally distributed. In addition, there do not seem to be large outliers that 

might otherwise skew regression results. However, close inspection of these graphs finds 

that, when measured by number of barrels, crude oil supply changes and forecast errors are 

the most diffuse with standard deviations of 3262 (vs. 2061 for gasoline) and 3263 (vs. 
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1996 for distillates), respectively. However, when measured by percent change in total 

supply, distillate supplies and forecast errors are most diffuse with standard deviations of 

1.893% (vs. 1.008% for gasoline) and 1.652% (vs. 1.041%), respectively. In light of this 

finding, we execute all tests in this study using supply change measured in barrels as well 

as in percent change.  

 

II. Empirical Methodology and Results 

Having determined that prices react to forecast error, it is sensible to conclude that 

investors care about the forecast error of analysts and might learn, over time, which 

analysts are most adept. We postulate that, if analysts are known to be accurate, investors 

will condition price on their forecasts and price reactions to their forecast errors should be 

large. The opposite should be true of inaccurate analysts. We test price reactions before 

true supply is revealed to determine whether prices conform to analyst information, and 

then examine prices after the supply announcement to see if prices equilibrate to reflect 

actual supply information. If investors do not learn about the accuracy of analysts from 

their past performance, oil prices should not react differently to different analysts’ 

forecasts. 

Specifically, we propose three testing methodologies. We first execute a test of 

investor reaction to forecasts and investigate returns prior to the announcement of true 

supply, seeking to determine if investors react more strongly to the most accurate analysts’ 

forecasts ex-ante. Then, we present two additional regression specifications, a two-stage 

and a one-stage, that test if more accurate analysts’ forecast errors induce larger price 

corrections ex-post. If analysts do not initially react to forecasts ex-ante, one would not 
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expect to see price correction ex-post. In the tests presented below, our default 

specification is to pool all forecasts, but controls for firm- and time- fixed effects are also 

presented. Results are qualitatively identical unless otherwise noted. 

II.A Ex-ante Regression 

First, we test the price-conditioning process ex-ante. We hypothesize that more 

accurate analysts’ forecasts elicit larger pre-announcement price movement. To test this, 

we first regress returns on forecasts in a rolling window of 20 weeks. We define the ex-ante 

return ( ) to be the return from open to close on Tuesday.  For each company, we regress 

the returns in times t to t+19 on forecasts during the same period. In order to ensure a 

representative measure for �

tr%

tβ  we require at least 10 matched pairs of  and FE in the 

20-week window. This generates, for each firm, a time series of betas describing how 

aggressively prices react to that firm’s forecasts. Specifically, we evaluate: 

tr%

( )t t tr Fα β ε= + +%%  

Put simply, we are testing if the market responds to forecasts, which are released prior to 

the true supply announcement on Wednesday morning. As forecasts can be changed 

throughout the course of the week, we investigate the return over the day closest to the 

announcement, Tuesday, to ensure that we capture price movements responding to the 

most recent forecasts. 7  In this regression, we conjecture that coefficients should be 

negative. When analysts forecast increasing supply, the market reacts by pushing prices 

down. The more accurate are the analysts, the more reliable this relationship.  

We also calculate for each firm at each point in time an ex-ante accuracy measure 

Acc as follows: 
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N is the number of dates for which a forecast error is calculable in the period from t-10 to 

t-1. Put simply, Acc is the inverse of the moving average absolute value of forecast errors 

over the past 10 periods. To ensure consistency and reliability, we include only those 

points at which 5 or more past FE’s exist.  

 Table I shows summary statistics for each of these measures organized into 

accuracy quintiles. The most accurate firms are those with the highest Acc, defined as 

“Q1”. Looking at the columns labeled “Beta (Ex-ante),” we find that, in aggregate, beta is 

negative. This implies that as forecasts increase, prices decrease. Moreover, we find that 

more accurate firms tend to have more negative coefficients. That is, prices fall farther in 

response to positive forecasts for more accurate analysts. This relationship is nearly 

monotonic, especially when measured by percent change, and the difference in average 

beta for Q1 and Q5 is significantly negative.  

With these preliminary results in mind, we evaluate the two-stage regression as 

follows: 

t tAccβ α γ ε= + +% %  

The resulting γ%  from this regression represents the relationship between ex-ante accuracy 

and the coefficient of market response to F. If γ%  is negative, the market conditions prices 

more on the forecasts of firms with higher accuracy. As can be seen in Table II Panel A, we 

find that prices seem to react more significantly to the forecasts of more accurate analysts 

in the period before actual supplies are announced. Coefficients are negative and 
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significantly so, even when controlling for firm-fixed effects, implying that investors react 

more (less) as firms improve (decrease) their accuracy over time.  Method of forecast 

measurement, by barrels or by percent change, does not seem to affect results. 

II.B Two-Stage Ex-post Regression  

We now repeat the previous two-stage regression using immediate returns and 

forecast errors in order to test ex-post effects. If investors condition prices on the forecasts 

of the most accurate analysts, prices should correct most aggressively in response to their 

forecast errors. To measure this response, we calculate the following regression: 

t t tr FEα β ε= + +  

The coefficient β represents the sensitivity of oil prices to the forecast error of a given firm 

at time t. A positive β implies that ex-ante over-estimation of supplies induces prices to 

increase when actual supplies are found to be lower than forecasts (positive forecast error). 

From the columns labeled “Beta (Ex-Post)” found in Table I, we can see that, in aggregate, 

beta is in fact positive. We also find that more accurate analysts exhibit more positive 

coefficients, indicating that more accurate analysts elicit a larger return response to their 

forecast errors. The difference in means for Q1 and Q5 is calculated and found to be 

significantly positive. Again, this relationship is nearly monotonic, especially when FE is 

measured in percent change.  

We then evaluate the second stage of our regression as follows: 

t tAccβ α γ ε= + +  

The γ from this regression represents the relationship between accuracy and the coefficient 

of market response to FE. If γ is positive, the market reacts more to firms with higher 

ex-ante accuracy, as is consistent with our main proposition. Results presented in Table II 
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Panel B confirm this conjecture, as γ is positive and significant. That is, investors respond 

with more sensitivity to forecast errors from firms whose analysis has been more accurate 

in the past. Findings are the same whether we aggregate based on change in number of 

barrels or on percentage change and are robust to controls for both time- and firm- fixed 

effects. 

II.C One-Stage Ex-post Regression 

Finally, we investigate the relationship between analyst forecasts and prices in a 

signaling framework. Consider that forecasts (and resulting forecast error) are information 

signals that analysts send to investors. We conjecture that these signals, however, are 

attenuated by previous accuracy. If a firm’s past analysis has been very inaccurate, their 

perceived signal is zero and constant. Their forecasts should not affect returns. In other 

words, if past performance is poor, investors ignore subsequent information signals. To 

capture this, we regress returns on weighted forecast errors, using our accuracy measure to 

attenuate FE. Specifically, we evaluate the following: 

, *( ) ( )t tot t tr Acc FE FEtα γ β= + + + ε  

Put simply, we are attempting to measure the marginal impact of accuracy on how the 

forecast error signal FE is transmitted to returns. In this setup, if γ is positive and 

significant, investors react to more accurate firms more strongly than inaccurate ones. If γ 

is positive and β is not, investors condition prices on accuracy-adjusted forecasts and not 

on forecasts alone.  

As can be seen in Table II Panel C, we find that γ is positive and significant while β 

is not. In other words, the accuracy adjusted forecast error is a significant determinant of 

price reaction while forecast error itself is not. Investors seem to adjust their perception of 
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forecast error based on the past accuracy of the analysts. As is consistent with the findings 

of the rest of this section, investors seem to condition price most closely on the forecasts of 

accurate analysts, and as a result, when errors are realized, price correction is also more 

pronounced for more accurate analysts. Again, this is true even when controlling for 

firm-fixed effects. 

 

III. Robustness Checks 

We execute several robustness checks. Unless otherwise noted, none yield 

appreciable differences and our conclusions are unaffected. Numerical results and testing 

specifics are available upon request.  

For all of our regressions, in calculating aggregate FE, we equally weight the three 

supplies. As a robustness check, we also try weighting the forecast errors for each supply 

by the in-sample betas calculated in Section 1.2, that is, the empirically derived sensitivity 

of price to forecast error. Re-running all of our tests, we find that results are not materially 

affected. In addition, we re-run all first-stage regressions with the additional inclusion of 

the mean forecast error for all firms on the right-hand side. However, we find that the 

resulting measures of price reactivity to firm-specific forecasts and forecast errors are still 

significantly related to previous accuracy. In fact, t-stats are the same sign throughout, with 

slightly lower magnitudes.  Qualitative conclusions remain unchanged. We also apply 

alternate specifications for the accuracy measure, measuring it as the inverse standard 

deviation, inverse variance, and rank order of forecast errors. In each case, we arrive at the 

same qualitative finding: more accurate firms induce a larger surprise response. 

We furthermore control for autocorrelation. Durbin-Watson coefficients are about 
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1.86, indicating that auto-correlation is not a significant concern in our tests. Nonetheless, 

we calculate Newey-West t-stats for our pooled regressions to control for both 

auto-correlation and heteroskedasticity and likewise note no important differences in 

significance levels or qualitative understanding.  

 

IV. Conclusion 

In this paper, we investigate the impact of analyst forecasts and investors’ ability to 

learn in a relatively transparent and straight-forward information setting. By focusing our 

attention on the crude oil futures market, we study an asset whose value can be directly 

connected to analyst information through simple economic arguments. Papers studying 

equity market analysts, particularly those that focus on cross-sectional effects, may be 

hindered by idiosyncratic components. Study of the oil market is not affected by such 

concerns. The market is also liquid and can be traded equally easily in both the long and 

short directions. The inability to short as easily as long in the equity market is a potential 

factor that generates asymmetric affects. Our test, again, is free from such concerns. 

Furthermore, the high-frequency nature of our data allows us to investigate immediate 

price reactions and to isolate the market’s response to analysts from other possible 

trade-inducing events. As such, we believe that our study avoids some of the confounding 

factors that cloud other studies of this kind and lends a unique voice to the discussion.   

We find that investors react to forecasts of the aggregate supply of crude oil, 

gasoline, and distillates. We also find that prices correct immediately for forecast errors. 

We further discover that investors seem to learn which analysts are most accurate and react 

most strongly to those analysts, conditioning prices on their forecasts ex-ante and reacting 
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immediately to their forecasting errors ex-post. This holds true in a number of different 

testing specifications and through a variety of statistical checks. Left unanswered, 

however, is the exact mechanism through which these price reactions are proliferated. One 

possible explanation is that those firms that tend to be most accurate also tend to have the 

largest trading desks. In that case, larger price impact on the part of accurate firms could be 

self-fulfilling, though this would still be consistent with our intuition regarding learning. It 

is also curious that crude oil supplies alone do not seem to explain oil futures returns. 

Perhaps a more complex set of interactions is necessary to fully explain the relationships 

between supply and price examined here. Since gasoline seems to be an important factor, 

electricity prices/supplies or other downstream products may have similar explanatory 

power. Without addressing these issues, it suffices here to state that we find oil futures 

prices to be intimately related to the aggregate supply of oil products and that investors 

recognize this relationship. They seem to trade on the forecasts of analysts in this field and 

further seem to learn which analysts are most accurate. 
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1 Intuition and simple arbitrage arguments imply that futures price changes should match 

consistently with changes in spot. Chinn, LeBlanc, and Olivier (2005) find that oil futures 

are in fact an unbiased estimator of future spot prices and outperform time-series models. 
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Coimbra and Soares (2004) show that futures outperform macroeconomic models as 

estimators for future spot prices. 

2 The combination of the regular and “e-miNY” contracts (ticker: QM) allow for liquid 

trading at both the institutional and individual levels. QM trades a contract size of 500 

barrels, allows for cash settlement, and has a bid-ask spread of 4 cents. 

3 NYMEX contracts expire at the end of trading 3 business days before the 25th of each 

month. Since our tests focuses on trading immediately surrounding supply announcements, 

they should not be significantly affected by expiration effects. 

4 In any week where there is a holiday, the report is delayed to Thursday at 10.30 AM. 

Historical archives of this data are available on the Department of Energy’s website: 

www.eia.doe.gov. We get our DOE reports from Bloomberg though they are available to 

the public through a number of media outlets. 

5 A full description of the supply data collection process may be found at: 

http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/weekly_petroleum_stat

us_report/historical/2005/2005_12_21/pdf/appendixa.pdf 

6 We use median forecast errors as well and arrive at the same findings. 

7 Casual observation and anecdotal evidence find that, in most cases, final forecasts are 

released on Tuesday. We, however, repeat all tests using the return accumulated over 

Monday and Tuesday and find no qualitative differences.  
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Crude Gasoline Distillates Total CL
Crude 1.00 -0.16 -0.34 0.15 -0.17
Gasoline -0.16 1.00 0.28 0.60 -0.01
Distillates -0.34 0.28 1.00 0.79 -0.04
Total 0.15 0.60 0.79 1.00 -0.12
CL -0.17 -0.01 -0.04 -0.12 1.00

Figure 1: Supply Correlations and their Relation to Price

Correlation Matrix

This figure illustrates the relative relationships between the three supplies examined in this
study: crude oil, gasoline, and distillates. Included as well is the price of crude oil, proxied
by the near-term futures contract CL. Crude supply is found to be negatively correlated to
gasoline and distillates. The total of the three supplies as well as crude oil supply alone are
negatively correlated with price.
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FEcrude FEgasolineFEdistillates FEtot Gcrude Gtot DF R^2
Coefficient 1.622 87 0.126
(P-value) (0.0004)
Coefficient 2.240 -0.637 90 0.115
(P-value) (0.0466) (0.5173)
Coefficient 2.196 1.548 2.948 87 0.327
(P-value) (0.0000) (0.0163) (0.0001)
Coefficient 2.210 87 0.3464
(P-value) (0.0001)
Coefficient 2.510 0.303 87 0.3414
(P-value) (0.0001) (0.5571)

(Coefficients reported x 10^6)

Figure 2: Price Response to Forecast Error

Price Reactiveness to Supply Changes

This figure reports price responsiveness to forecast error (FE) calculated as forecasted supply minus
actual supply. The graph shows the average absolute value of price movements for oil futures (ticker: CL)
on announcement days. Prices react substantially after forecast errors are realized at 10:30 AM, demarked
by the vertical line. Very little price movement is observed before 10:30 and attenuated drift seems
apparrent throughout the rest of the day. The table shows regression results when returns are regressed on
forecast errors (FE) and aggregate supply change (Gtot). They indicate that the immediate return (change
in price from 10:25 to 10:45 AM) responds significantly positively to forecast errors. When supply is
lower (higher) than expected, prices rise (fall). Crude supplies alone exhibit this effect, but aggregate
supply exhibits the strongest effect. Data is collected from June 2003 to March 2005.
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Gross % Gross % Gross %
Mean 297 0.105% 85 0.046% 20 0.037%
Median 300 0.102% 500 0.238% 200 0.171%
SD 3262 1.150% 2061 1.008% 2276 1.893%
Max 7900 2.996% 4900 2.263% 6400 5.037%
Min -9100 -3.266% -5700 -2.895% -6800 -5.191%

DOE Supply Change Data
Crude Oil Gasoline Distillates

Figure 3: Supply Changes
This figure reports summary statistics regarding supply changes over our test period. Though all three supplies
are similarly distributed, when measured in barrels, crude oil appears to be most diffuse. When measured in
percent change of total supply, distillate supply changes appear to be the most diffuse. Supplies are recorded at
10:30 AM each announcement day over the period from June 2003 to March 2005.
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Gross % Gross % Gross %
Mean 8 -0.002% 89 0.040% -13 -0.008%
Median 75 0.026% 100 0.048% 100 0.084%
SD 3263 1.156% 2123 1.041% 1996 1.652%
Max 8900 3.130% 6500 3.107% 8300 6.593%
Min -11500 -4.361% -6400 -2.956% -7400 -6.410%

Analyst Forecast Errors
Crude Oil Gasoline Distillates

Figure 4: Forecast Errors
This figure presents summary statistics regarding forecast errors. Again, when measured in barrels, crude oil
appears to be most diffuse. When measured in percent change of total supply, distillates appear to be the most
diffuse. Distributions are roughly Normally distributed and there are not a substantial number of outliers.
Forecast errors are calculated as the 10:00 AM forecasted supply minus the 10:30 AM actual supply over the
period from June 2003 to March 2005.
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Acc Beta       
(Ex-Ante)

Beta       
(Ex-Post)

Acc Beta       
(Ex-Ante)

Beta       
(Ex-Post)

Aggregate 169.795 -0.301 1.646 30.971 -0.079 0.273
Q1 228.873 -0.565 1.708 41.808 -0.169 0.348
Q2 187.140 -0.474 1.743 35.264 -0.098 0.318
Q3 166.172 -0.703 1.853 30.884 -0.072 0.265
Q4 145.322 0.054 1.557 26.028 0.011 0.217
Q5 120.982 0.193 1.360 20.749 -0.066 0.215
Q1-Q5 107.891 -0.758 0.349 21.059 -0.103 0.133
(P-value) (0.000) (0.001) (0.000) (0.000) (0.002) (0.000)

This table tests the monotonicity of the relationship between accuracy and price responsiveness. Accuracy
(Acc) is the inverse of the moving average absolute value of forecast errors over the previous 10 periods. Price
responsiveness (Beta) is calculated in a 20-period rolling regression r = a + Beta*F + e. The return r is the
return on the Tuesday preceding the announcement of actual supply levels for ex-ante tests. Betas are found to
be negatively related to accuracy (meaning positive forecasts induce larger reductions in price for more
accurate analysts). For ex-post tests, the return is calculated from 10:25 AM to 10:45 AM on Wednesday
(forecast error is realized at 10:30 AM). Betas are found to be positively related to accuracy (meaning positive
forecast errors induce larger price increases for more accurate analysts). These relationships are found to be
nearly monotonic and the difference between average values for the extreme quintiles is significantly different
from zero. Barrel coefficients reported x10^-6. 

Table I: Quintile Analysis

Barrels Percent
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Pooled Firm-
fixed

Time-
fixed

Pooled Firm-
fixed

Time-
fixed

Coefficient -7.850 -8.830 3.979 -6.800 -5.790 -0.220
(P-value) (0.0001) (0.0001) (0.1501) (0.0001) (0.0003) (0.9250)
DF 788 773 723 788 773 723
R^2 0.019 0.208 0.390 0.023 0.174 0.359

Pooled Firm-
fixed

Time-
fixed

Pooled Firm-
fixed

Time-
fixed

Coefficient 3.140 1.449 5.845 7.220 5.294 7.058
(P-value) (0.0001) (0.0259) (0.0001) (0.0001) (0.0001) (0.0001)
DF 788 773 723 788 773 723
R^2 0.025 0.871 0.905 0.112 0.807 0.874

Acc*FE FE Acc*FE FE Acc*FE FE Acc*FE FE
Coefficient 8.180 0.000 8.852 0.000 9.780 -63.880 10.670 -77.420
(P-value) (0.0001) (0.8392) (0.0001) (0.9016) (0.0001) (0.2111) (0.0001) (0.1298)
DF
R^2

Pooled
Barrels

934
0.261

Percent
Firm-fixed Pooled Firm-fixed

950
0.259

Panel C: One-stage Ex-post Regression Coefficients

This table presents tests of the effect of previous-period accuracy on price responsiveness. Panel A
looks at forecasts (F). Panels B and C investigate forecast error (FE). Accuracy (Acc) is the inverse of
the moving average absolute value of forecast errors over the previous 10 periods. Panel A presents
results for a two-stage regression. First, we find calculate price responsiveness (Beta) in a 20-period
rolling regression r = a + Beta*F + e where r is the return on the Tuesday preceding the announcement
of actual supply levels. Reported are gammas from the regression Beta = a + Gamma*Acc. Negative
gamma implies that investors condition more on forecasts of more accurate analysts. Panel B is the
same two-stage regression with first stage r` = a + Beta*FE where r` is the return calculated from
10:25 AM to 10:45 AM on Wednesday (forecast error is realized at 10:30 AM). Reported are the
gammas from the regression: Beta' = a + Gamma'*Acc + e. Panel C evaluates the regression r = a+
Gamma*(Acc*FE) + Beta*FE. In Panels B and C, a positive gamma implies that investors condition
more on the forecasts of more accurate analysts. All coefficients reports x10^-3.

Table II: Regression Analysis

Barrels Percent
Panel B: Two-stage Ex-post Regression Gammas

Panel A: Ex-ante Regression Gammas
Barrels Percent

950
0.240

934
0.282
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