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Abstract

This paper applies a partial identi�cation approach to poverty measurement

when data errors are non-classical in the sense that it is not assumed that

the error is statistically independent of the outcome of interest, and the error

distribution has a mass point at zero. This paper shows that it is possible to �nd

non-parametric bounds for the class of additively separable poverty measures.

A methodology to draw statistical inference on partially identi�ed parameters is

extended and applied to the setting of poverty measurement. The methodology

developed in this essay is applied to the estimation of poverty treatment e�ects

of an anti-poverty program in the presence of contaminated data.
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1 Introduction

Much of the statistical analysis of poverty measurement regards the data employed

to estimate a poverty measure as error-free. However, it is amply recognized that

measurement error is a very common phenomenon for most data sets used in the

estimation of poverty. This problem is particularly relevant for developing countries,

where the majority of the poor are concentrated, since �nancial, technological, and

logistical constraints are more likely to a�ect the quality of the data.

Measurement error can a�ect the estimation of poverty in di�erent ways. For

example, the poverty line may be set for heterogenous groups of people without con-

sidering idiosyncratic di�erences in the cost of basic needs, arbitrary imputations may

be made when missing and zero outcomes appear in the sample, and the variable of

interest may be misreported by an important subset of survey respondents. Often

the methodologies applied to solve these problems are arbitrary; at the same time,

the results are highly sensitive to such adjustments. For instance, Szekely, Lustig,

Cumpa and Mejia (2000) applied several techniques to adjust for misreporting in

Latin America. In the case of Mexico they found that, depending on the method

for performing the adjustment, either 14 percent or 76.6 percent of the population

is below the poverty line (in absolute terms it implies a di�erence of 57 million indi-

viduals). This has important policy implications since, depending on which of these

numbers is used as a reference, the amount of resources directed to social programs

can be considered either appropriate or totally insu�cient.

Several approaches have been developed in order to analyze the e�ects of measure-

ment error on poverty measurement. For instance, Chesher and Schluter (2002) study

multiplicative measurement error distributed continuously and independently of true

income to investigate the sensitivity of welfare measures to alternative amounts of

measurement error. Ravallion (1994) considers additive random errors when estimat-

ing individual-speci�c poverty lines, �nding that heterogeneity in error distributions
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generates ambiguous poverty rankings. An alternative approach, robust estimation,

aims at developing point estimators that are not highly sensitive to errors in the data.1

The objective is to guard against worse-case scenarios that errors in the data could

conceivably produce. In that sense it takes an ex-ante perspective of the problem.

Cowell and Victoria-Feser (1996) apply this approach to poverty measurement by

using the concept of the in
uence function to assess the in
uence of an in�nitesimal

amount of contamination upon the value of a poverty statistic (Hampel 1974). They

�nd that poverty measures that take as their primitive concept poverty gaps rather

incomes of the poor are in general robust under this criterion.

In the present study, we do not consider classical measurement error, that is to say,

we do not assume the existence of chronic errors a�ecting every observation, neither

do we assume that the outcome of interest is statistically independent of the error.

Instead of assuming that the error distributions have no mass point at zero, we con-

sider the impact of intermittent errors by setting an upper bound to the proportion

of gross errors within the data. Since a poverty measure is not point identi�ed un-

der the assumptions of the model of errors under consideration, we follow Horowitz

and Manski (1995) and apply a partial identi�cation approach.2 By using a fully

non-parametric method, we show that for the family of additively separable poverty

measures it is possible to �nd identi�cation regions under very mild assumptions.

The paper is organized as follows. Section 2 introduces some important concepts

for poverty measurement. Section 3 states the problem formally, presenting both the

contaminated and corrupted sampling models within the context of poverty measure-

ment. Section 4 investigates the identi�cation region for additively separable poverty

measures (ASP). It is shown that we can �nd upper and lower bounds for this class of

poverty measures with both contaminated and corrupted data. Section 5 character-

1See Hampel et al (1986) and Huber (1981) for a comprehensive treatment of robust inference.
2Examples of applications of this approach in other settings are Molinari (2005a) and Dominitz

and Sherman (2005). See Manski (2003) for an overview of this literature
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izes the identi�cation regions of ASP measures through their length and breakdown

points. Section 6 applies two conceptually di�erent types of con�dence intervals for

partially identi�ed poverty measures. The implications for hypothesis testing when

a poverty measure is not point identi�ed are also discussed. Section 7 provides some

insight on the e�ect of both data contamination and data corruption for poverty

comparisons. Sections 8 and 9 give two empirical illustrations of the methodology

developed in the paper. Most of the mathematical details are in the Appendix.

2 Poverty Measurement: Conceptual Framework

Let A denote the ��algebra of Lebesgue measurable sets on R. Let P denote the

set of all probability distributions on (R;A). Thus for any P 2 P the triple (R;A; P )
is a probability space. Let z 2 R++ be the poverty line.

A person is said to be in poverty if her income, y 2 R, or any other measure of

her economic status is strictly below z. An aggregate poverty index is de�ned as a

functional of the distribution P 2 P . Formally:

De�nition 1 A Poverty Index is a functional �(P ; z) : P �R++ ! R that indicates

the degree of poverty when a particular variable has distribution P and the poverty

line is z.

An important type of poverty measures is the Additively Separable Poverty(ASP)

class which is de�ned as follows:

�(P ; z) =

Z
�(y; z)dP (1)

where �(y; z) : R� R++ ! R is the poverty evaluation function, an indicator of the

severity of poverty for a person with income y when the poverty line is �xed at z.

3



Since the axiomatic approach to poverty measurement proposed by Sen (1976),

most economists interested in the phenomenon of poverty have quanti�ed poverty

in a manner consistent with those principles. One of those principles, the focus

axiom, requires a poverty measure to be independent of the income distribution of

the non poor. The monotonicity axiom says that, everything else equal, a reduction

in the income of a poor individual must increase the poverty measure; the transfer

axiom emphasizes the positive e�ect of a regressive transfer on the poverty measure,

that is to say, given other things, a pure transfer of income from a poor individual

to any other individual that is richer must increase the poverty measure. Finally,

Kakwani (1980) has proposed a 4th property that prioritizes transfers taking place

down in the distribution, other things being equal. These distributional concerns

are made operational through the characteristics of the poverty evaluation function

�(y; z). It is usually assumed that �(y; z) is continuous for y < z, non increasing in

its �rst argument and non decreasing in its second argument. It is also assumed that

�(y; z) is convex in its �rst argument and �(y; z) = 0 for y � z.

2.1 Speci�c Poverty Measures

Watts (1968) proposed a poverty measure which is de�ned as follows:

�W =

Z
1(y < z) ln(

y

z
)dP (2)

This poverty measure satis�es Sen's monotonicity and transfer axioms as well as

Kakwani's transfer-sensitivity axiom.

Foster, Greer and Thorbecke (1984) proposed an ��class of poverty measures,

��, which can be obtained by:

�� =

Z
1(y < z)(1� y

z
)�dP (3)
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�� satis�es monotonicity axiom for � > 0, transfer axiom for � > 1, and transfer

sensitivity axiom for � > 2.

Hagenaars (1987) provided a poverty measure that satis�es all three axioms. The

speci�c poverty measure he gave is

�H =

Z
1(y < z)(1� ln y

ln z
)dP (4)

Finally, we consider the Clark, Hemming and Ulph (1981) poverty measure:

�� =
1

�

Z
1(y < z)(1� (

y

z
)�)dP (5)

which satis�es the monotonicity axiom for all � > 0, and both transfer axioms

for � < 1. Finally, Chakravarty (1983) derived a poverty measure which is equal to

�Ch = ���. This measure also satis�es all three axioms for � 2 (0; 1).

3 Statement of the Problem

Let each member j of population J be characterized by the tuple (yj1; y
j
0) in the

space R�R, where yj1 is the outcome of interest denoting the "true" equivalent income
(or expenditure) for a given poverty line z. Let the random variable (y1; y0) : J �!
R � R have distribution P (y1; y0). Let a random sample be drawn from P (y1; y0).

Let's assume that instead of observing y1, one observes a random variable y de�ned

by:

y � wy1 + (1� w)y0 (6)

Realizations of y with w = 0 are said to be data errors, those with w = 1 are error-

free, and y itself is a contaminated version of y1. Let Q(y) denote the distribution

of the observable y. Let Pi = Pi(yi) denote the marginal distribution of yi. Let

Pij = Pij(yi j w = j) denote the distribution of y conditional on the event w = j for

5



i; j 2 f0; 1g. Let p = P (w = 0) be the marginal probability of a data error. With

data errors, the sampling process does not identify P1 (the object of interest) but

only Q(y), the distribution of the observable y. By the law of total probability, these

two distributions can be decomposed as follows:

P1 = (1� p)P11 + pP10 (7)

Q(y) = (1� p)P11 + pP00 (8)

This problem can be approached from di�erent perspectives. In robust estimation

P1 is held �xed and Q(y) is allowed to range over all distributions consistent with

both equations. In the context of poverty measurement, the objective would be to

estimate the maximum possible distance between �(Q; z) and �(P1; z). In contrast,

the present analysis holds Q(y) �xed because it is identi�ed by the data, and P1 is

allowed to range over all distributions consistent with (3) and (4). This approach

recognizes that the parameter of interest might not be point identi�ed, but it can

often be bounded.

The sampling process reveals only the distribution Q(y). However, informative

identi�cation regions emerge if knowledge of the empirical distribution is combined

with a non-trivial upper bound, �, on p.

This investigations analyzes two di�erent cases of data errors. In the �rst case, we

will assume that the occurrence of data errors is independent of the sample realizations

from the population of interest. Formally

P1 = P11 (9)

This particular model of data errors is known as "contaminated data" or "con-

taminated sampling" model (Huber 1981). In the other case, (9) does not hold and it

is only assumed that there exists a non-trivial upper bound on the error probability.

6



Horowitz and Manski (1995) refer to this case as "corrupted sampling".

De�ne the sets

P1(p) � P \ f(1� p)�11 + p�10 : (�11; �10) 2 P11(p)� Pg (10)

P11(p) � P \
�
Q� p�00

1� p
: �00 2 P

�
(11)

If there exists a non-trivial upper bound, �, on the probability of data errors, then

it can be proved that P11 and P1 belong to the sets P11(�) and P1(�) respectively,

where P11(�) � P1(�). These restrictions are sharp in the sense that they exhaust all

the available information, given the maintained assumptions (Horowitz and Manski

1995).

4 Partial Identi�cation of Poverty Measures

Suppose that a proportion p < 1 of the data is erroneous. Furthermore, assume

there exists a non-trivial upper bound, �, on p: p � � < 1.3 From the analysis above,

we know that the distribution of interest P1 is not identi�ed: i.e. P1(�) is not a

singleton.

Even though P1 is not point identi�ed, it is partially identi�ed in the sense that it

belongs to the identi�cation region P1(�). There is a mapping from this set into the

domain in R of a given poverty measure �. Therefore, the question arises whether

there is a way to characterize the identi�cation region of �. As we will see below, it is

possible to do so for the class of ASP poverty measures by ordering the distributions

in P� according to a stochastic dominance criterion. Such criterion is de�ned as

3In practice, upper bounds on the probability of data errors can be estimated from a validation
data set or by the proportion of imputed data in the sample. See Kreider and Pepper (2004) for an
application of a validation model.
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follows:

De�nition 2 Let F;G 2 P. Distribution F First Order Stochastically dominates

(FOD) distribution G if

F ((�1; x]) � G((�1; x])

for all x 2 R.

In the case of monotone functions, there is a well-known result that will be helpful

to obtain identi�cation regions for the ASP measures:

Lemma 1 The Distribution F �rst-order stochastically dominates the distribution G

if and only if, for every non decreasing function ' : R! R, we have

Z
'(x)dF (x) �

Z
'(x)dG(x) (12)

Finally, let me introduce a basic concept that is a building block for identi�cation

regions.

De�nition 3 For � 2 (0; 1], the �-quantile of Q(y) is given by

r(�) = infft : Q((�1; t]) � �g.

Now we can state the main result of this section. Following the approach of Horowitz

and Manski (1995) to �nd sharp bounds on parameters that respect stochastic dom-

inance 4 we can construct identi�cation regions for ASP measures.

Proposition 1 Let it be known that p � � < 1. De�ne probability distributions L�

and U� on R as follows:

L� =

8><>:
Q(y�t)
1�� for t < r(1� �)

1 otherwise

4A parameter �(�) respects stochastic dominance if �(F ) � �(G) whenever F FOD G.
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U� =

8><>: 0 for t < r(�)

Q(y�t)��
1�� otherwise

If �(P ; z) belongs to the family of Additively Separable Poverty Measures and the

poverty evaluation function is non-increasing in y, then identi�cation regions for

�(P11; z) and �(P1; z) are given by:

H[�(P11; z)] = [�l(U�; z);�u(L�; z)] (13)

and

H[�(P1; z)] = [(1� �)�l(U�; z) + � 0; (1� �)�u(L�; z) + � 1] (14)

where  0 = infy2R+ �(y; z) and  1 = supy2R+ �(y; z).

PROOF: See Appendix.

These results are quite intuitive. In the case of contaminated data, the smallest

feasible value of �(P11; z) occurs when we place all of the erroneous data as far

out as possible in the left-hand tail of the observed distribution Q. Similarly, to

obtain the largest feasible value of �(P11; z), L� places all of the erroneous data as

far out as possible in the right-hand tail of the observed income distribution. If the

data is corrupted, we follow a similar procedure, placing all of the erroneous data at

infy �(y; z) and supy �(y; z) instead.

Example 1 Assume P1 = P11. Let Q(y) = U [0; 1], 0 < p < � < z < 1 � �. Let

the poverty measure be given by ' =
R1
0
1(y < z)d�. Then, '(P1; z) 2 [ z��

1�� ;
z

1�� ]. If

P1 6= P11 then '(P1; z) 2 [z � �; z + �]. Notice that '(Q; z) belongs to both intervals.

5 Characterizing Identi�cation Regions

The objective of this section is to describe the properties of the identi�cation

region for ASP measures. Our approach is not normative in that we are not ar-
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guing that one poverty measure is better than another based on our �ndings. We

analyze identi�cation regions through two concepts: identi�cation breakdown points

and length of the identi�cation region, with the hope of shedding some light on the

identi�cation properties of poverty measures.

5.1 Identi�cation Breakdown Points for Poverty Measures

We denote by D the family of ASP measures indexed by j with poverty evaluation

function �j(y; z) satisfying �j(y; z) = 0 for all y � z, increasing in its second argument,

decreasing in its �rst argument, and continuous and convex for all y < z. Moreover,

we assume the existence of a constant cj 2 R+ such that �j(0; z) = cj. We denote

by Rj = f�j(P ; z);P 2 Pg the range of a poverty measure �j(P ; z) in D. More

precisely, the range of a poverty measure in D is given by Rj = [0; cj].
5

From the literature on robust estimation we borrow the concept of breakdown

point which in the present setting can be interpreted as the largest fraction of er-

roneous data that can be in a sample without driving a poverty measure to either

boundary of its range. However, as noticed by Horowitz and Manski (1995), there are

some conceptual di�erences between the breakdown point in robust estimation and

its counterpart in identi�cation analysis. While in the partial identi�cation approach

� is evaluated at the empirical distribution Q, in robust estimation it is evaluated at

the distribution of interest P1. More formally, the identi�cation breakdown point of a

poverty measure �(P ; z) when data are contaminated can be constructed as follows:

for some ASP measure in D de�ne

�(�j) = �j(L�; z)� cj (15)

 (�j) = �j(U�; z) (16)

5Most of the ASP measures used in empirical work belong to this class. For example, the Foster,
Greer and Thorbecke (1984), and the Clark, Hemming and Ulph (1981) families of poverty measures
are two elements of D.
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and let ��j = supf� : �j(�) < 0g, and � j = supf� :  j(�) > 0g. The identi�cation

breakdown point for an ASP measure is given by:

��j = minf��j ; � j g (17)

Let HQ =
R
1(y < z)dQ be the head-count ratio or proportion of the poor for the

observed distribution Q, and let �H be its breakdown point. Clearly the head-count

ratio is an element of D. We have the following proposition:

Proposition 2 For all Q 2 P, we have

�H = inff��j : j 2 Dg

PROOF: See Appendix.

Therefore, the breakdown point for the head-count ratio is a lower-bound of the

set D.

5.2 Length

Another way to "compare" the di�erent poverty measures is through the length

of their identi�cation regions. Although we are not arguing here that one can choose

one poverty measure over another based on this criterion, the results obtained in

this section provide some initial insights about the behavior of the di�erent poverty

measures for the model of errors under consideration. To formalize the analysis, let

m : B ! R+ be the Lebesgue measure on the Borel sets, B, of R+. Here is the main

result of this section:

Proposition 3 Let �1(P ; z) : P � R++ ! R and �2(P ; z) : P � R++ ! R

be two additively separable poverty measures with non-increasing evaluation func-

tions �1(y; z) : R++ � R ! R and �2(y; z) : R++ � R ! R, respectively. Sup-
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pose that �2(y; z) � �1(y; z) for all y < z and �2(y; z) = �1(y; z), otherwise. Let

z � maxfr(�); r(1� �)g If the data is either corrupted or contaminated, then

m(H[�2]) � m(H[�1])

PROOF: See Appendix.

We can get a similar result by imposing more assumptions on the "shape" of the

poverty evaluation function. In particular, we can use the fact that some families of

poverty measures are generated by "convexifying" a poverty evaluation function in

order to show the existence of length orderings within families of poverty measures.

The following two corollaries state this result more formally:

Corollary 1 Let �1(y; z) : R+ � R++ ! R be a non increasing, and continuous on

(0; z) poverty evaluation function, with z � maxfr(�); r(1 � �)g, and f be a convex

function on �1(y; z) such that

A1. �2(y; z) = f � �1(y; z)
A2. f(�1(0; z)) � �1(0; z)

A3. f(�1(z; z)) = �1(z; z)

Then m(H[�2]) � m(H[�1]).

PROOF: See Appendix.

Corollary 2 Given two continuous poverty evaluation functions �1(y; z) : R+ �
R++ ! R and �1(y; z) : R+ � R++ ! R, z � maxfr(�); r(1� �)g such that

A4. �1(0; z) = �2(0; z)

A5. �1(y; z) = �2(y; z), for all y � z

A6. �0i < 0, �00i > 0 on (0; z), i = 1; 2

A7. ��1(y;z)00

�1(y;z)0
� ��2(y;z)00

�2(y;z)0
uniformly on (0; z)

Then m(H[�2]) � m(H[�1]).

PROOF: See Appendix.
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Example 2 An �-ordering.

Let ��(y; z) : R+ � R++ ! R be de�ned as follows:

�� =

8><>: (1� y

z
)� if y 2 [0; z)

0 if y > z

De�ne fc(x) = xc. Clearly this is a convex function for all x > 0 and c � 1. Take

any positive integers �1 and �2 such that �1 = k�2 > 0. Hence,

��1(y; z) = fk � ��2

By Corollary 1.1, m�2 � m�1.

Example 3 An e-ordering

Let �Ch(y; z) : R+ � R++ ! R be de�ned as follows:

�Ch =

8><>: 1� (y
z
)e if y 2 [0; z)

0 if y > z

for e 2 (0; 1). After some algebraic manipulations we have:

��00

Ch

�0

Ch
= (1�e)

y

on (0; z). Therefore, me(H[�Ch]) is decreasing on e by Corollary 1.2.

Example 4 Length rankings.

Let � � 1, � 2 (0; 1), e 2 (0; 1). Then it is easy to show, applying Proposition

1.3, that the following length rankings hold: m(H[�W ]) � m(H[�C ]) � m(H[��])

and m(H[�W ]) � m(H[�C ]) � m(H[�Ch]).
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6 Statistical Inference for Partially Identi�ed Poverty

Measures

In this section, we obtain two conceptually di�erent types of con�dence sets for

the identi�cation regions of poverty measures. The �rst type of con�dence set uses

the Bonferroni's inequality to develop con�dence intervals that asymptotically cover

the entire identi�cation region with at least probability 
. For the second type of

con�dence set, we follow Imbens and Manski (2004) by applying con�dence intervals

that asymptotically cover the true value of the poverty measure with at least this

probability. We also discuss some implications of this methodology for hypothesis

testing in the context of partially identi�ed poverty measures.

6.1 Con�dence Intervals

Let (R;A; Q) be a probability space, and let P be a space of probability dis-

tributions. The distribution Q is not known, but a random sample y1; y2; : : : ; yn is

available.

In the point identi�ed case (� = 0), a consistent estimator of the class of ASP

measures is given by

�̂ =
1

n

nX
i=1

�(yi; z) (18)

where �(y; z) is a measurable poverty evaluation function. By applying The Central

Limit Theorem, the standard 100 � 
% con�dence interval for �(P ; z) is given by:

CI�
 =

�
�̂� z 
+1

2

�̂p
n
; �̂ + z 
+1

2

�̂p
n

�
(19)

where �̂ = � + op(1) and z� is the � quantile of the standard normal distribution.6

To derive the asymptotic properties for the Bonferroni con�dence set, we will

6Kakwani (1993) describes this methodology for ASP measures.
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make use of a result on L-statistics due to Stigler (1973), who explores the asymptotic

behavior of trimmed means. De�ne the con�dence interval CI
[�l;�u]

 as

CI [�l;�u]
 =

�
�̂l � z 
+1

2

�̂lp
n
; �̂u + z 
+1

2

�̂up
n

�
(20)

Where �̂l, �̂u, �̂
2
l , and �̂

2
u are estimators satisfying, respectively

A8. �̂l = �l + op(1)

A9. �̂u = �l + op(1)

A10. �̂2l =
V arU� (�(y;z))+(�(r(1��))��l)�

1�� + op(1)

A11. �̂2u =
V arL� (�(y;z))+(�(r(�))��u)�

1�� + op(1)

We have the following result

Proposition 4 Let � < 1 be known. Assume
R
�(y; z)2dQ < 1. Let r(1 � �) and

r(�) be continuity points of Q(y). Let the poverty evaluation function, �(y; z), be a

non-increasing function that is continuous at r(1� �) and r(�). Then

lim
n!1

P([�l;�u] � CI [�l;�u]
 ) � 
 (21)

PROOF: See Appendix.

For the second type of con�dence interval, de�ne � = �U ��L and �̂ = �̂U � �̂L

and consider the following set of regularity conditions, which are equivalent to the

assumptions imposed by Imbens and Manski (2004).7

A13. Q(y) 2 F , where F is the set of distribution functions for which
R j

�(y; z) j3 dQ < 1, Q00 is bounded in the neighborhoods of r(�) and r(1 � �) while

Q0(r(�)) > 0 and Q0(r(1� �)) > 0.

A14. �2 � �2l ; �
2
u � �2 for some positive and �nite �2 and �2.

A15. �u � �l � � <1
7More precisely, we have made use of the results on uniform convergence of trimmed means

developed by De Wett (1976) to develop a set of regularity conditions equivalent to those required
by Imbens and Manski (2004) to obtain their asymptotic result.
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A16. For all � > 0 there are � > 0, K and n0 such that n � n0 implies

Pr
�p

n j �̂�� j> K��
�
< �, uniformly in Q 2 F .

De�ne the con�dence interval CI
�


 as:

CI
�


 =

�b�l � Cn�̂lp
n
; b�u +

Cn�̂up
n

�
(22)

where Cn satis�es

�

 
Cn +

p
n

�̂

max(�̂l; �̂u)

!
� �

��Cn

�
= 
 (23)

Proposition 5 Let � < 1. Let r(1��) and r(�) be continuity points of Q(y). Let the
poverty evaluation function, �(y; z), be a non-increasing function that is continuous

at r(1� �) and r(�). Suppose A13-A16 hold. Then

limn!1infP2PP
�
� 2 CI�


�
� 
 (24)

PROOF: See Appendix.

6.2 Hypothesis Testing

Consider the implications of testing hypothesis of the form:

H0 : � = �0

versus

H1 : � 6= �0

When a parameter is not point identi�ed, the power of a test is not a straightfor-

ward extension of the point identi�ed case. For instance, consider the test

reject H0 if
p
n(�̂l��0)

�l
> z 
+1

2

or
p
n(�̂u��0)

�u
< �z 
+1

2
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The rejection region is

R = f(y1; : : : ; yn) :
p
n(�̂l��0)

�l
< z 
+1

2

or
p
n(�̂u��0)

�u
< �z 
+1

2

g

and the power function is de�ned by

�n(�) = P�((y1; : : : ; yn) 2 R)

De�ne the events

An = fYn +
p
n(�l��0)

�̂l
> z 
+1

2

g

Bn = fZn +
p
n(�u��0)

�̂u
< �z 
+1

2

g

where Yn =
p
n(�̂l��l)
�̂l

and Zn =
p
n(�̂u��u)

�̂u
. From proposition 1.4, we can deduce that

this test has a level 1� 
 since

lim
n!1

�n(�0) = lim
n!1

P(An [Bn)

� 1� lim
n!1

P([�l;�u] � CI [�l;�u]
 )

� 1� 


Next, suppose the true value of � is �� 6= �0. If � is point identi�ed, the probability

of correctly rejecting the null hypothesis, H0, tends to 1 asymptotically. On the other

hand, if the parameter is not point identi�ed, the power of the test for values other

than �0 is not longer equal to one in general. To verify that this is the case, it will

be helpful to divide the analysis in several cases:

i) �0 2 [�l;�u]

In this case limn!1 �n(��) = limn!1 �n(�0) � 1 � 
. Hence, a type II error is

more likely to arise whenever �0 belongs to the identi�cation region.

ii) �0 < �l

17



Notice that

lim
n!1

�n(�
�) � lim

n!1
P(An [Bn)

� lim
n!1

P(

p
n(�̂l � �l)

�̂l
+

p
n(�l � �0)

�̂l
)

= 1

where I have used the fact that
p
n(�̂l��l)
�̂l

+
p
n(�l��0)

�̂l
will converge to +1 in proba-

bility. Since �(��) is a probability measure, we have limn!1 �n(��) = 1.

iii) �0 > �u

By a similar argument to the one applied in ii), we have limn!1 �n(��) = 1.

Interestingly, the power �(��) is a decreasing function of � because the size of

the identi�cation region is positively related to it: the larger the value of the upper

bound �, the more likely it is that �0 belongs to the identi�cation region, implying a

higher a probability that a type II error will occur.

7 Poverty Comparisons

This section addresses both identi�cation and inference problems when comparing

some poverty measure between two populations and data errors are generated by the

models under consideration. The problem is formulated as follows: there are two

populations, A and B, characterized by distributions F andG, respectively. Moreover,

we assume the existence of upper bounds �A and �B on the proportion of data errors.

We are interested in comparing, in terms of some ASP measure, the two populations.

De�ne the di�erence between the poverty measures corresponding to distribution

F and G as D = �(F ; z)��(G; z). Proposition 1.1 can be used to obtain informative,
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although not necessarily sharp, outer bounds on D given �A and �B.
89

Proposition 6 Let it be known that pA � �A < 1 and pB � �B < 1. If �(P ; z)

belongs to the family of additively separable poverty measures and the poverty evalua-

tion function is non-increasing in y, then identi�cation regions for D(F11; G11; z) and

D(F1;G1; z) are given by

H[D(F11; G11; z)] = [�l
�A
(F ; z)� �u

�B
(G; z);�u

�A
(F ; z)� �l

�B
(G; z)] (25)

and

H[D(F1; G1; z)] = [Dl
1; D

u
1 ] (26)

where

Du
1 = (1� �A)�

u
�A
(F ; z)� (1� �B)�

l
�B
(G; z) + �A 1 � �B 0

Dl
1 = (1� �A)�

l
�A
(F ; z)� (1� �B)�

u
�B
(G; z) + �A 0 � �B 1

7.1 Statistical Inference

Let y1; : : : ; yn and y1; : : : ; ym be two independent random samples drawn from

F and G, respectively. We will construct con�dence intervals for the identi�cation

region of the poverty di�erence �A � �B.

De�ne the con�dence interval CIDl;Du

 as follows

CI [Dl;Du]

 =

h
�̂l(F )� �̂u(G)� z 
+1

2

�̂�; �̂u(F )� �̂l(G) + z 
+1
2

�̂��
i

(27)

8In principle, it is not necessary to restrict both distributions to have same type of data errors.
For instance, distribution A could be characterized by contaminated data while distribution B by
corrupted data. The analysis and conclusions would not change by including that level of detail.

9As noticed by Manski (2003), outerbounds on di�erences between parameters that respect
stochastic dominance are generally non-sharp. In the present case, for these to be sharp, there
would have to exist two distributions of errors that jointly make �(F ; z) and �(G; z) attain their
sharp bounds.
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where

�̂� =

r
�̂2lF
n

+
�̂2uG
m

�̂�� =

r
�̂2uF
n

+
�̂2lG
m

Proposition 7 Let �i < 1, i = A;B be known,. Assume Ei(�(y; z)
2) < 1. Let

ri(1��i) and ri(�i) be continuity points and let m;n!1 such that m
m+n

! � 2 (0; 1).

Let the poverty evaluation function, �(y; z), be continuous at ri(1 � �i) and ri(�i).

Then

lim
n;m!1

P([Dl; Du] � CI [Dl;Du]

 ) � 
 (28)

PROOF: See Appendix.

8 Application: Evaluation of an Anti-Poverty Pro-

gram with Missing Treatments

8.1 Progresa

In 1997, the Mexican government introduced the Programa de Educacion, Salud

y Alimentacion (the Education, Health, and Nutrition Program), better known as

Progresa, and recently renamed Oportunidades, as an important element of its more

general strategy to eradicate poverty in Mexico. The program is characterized by a

multiplicity of objectives such as improving the educational, health and nutritional

status of poor families.

Progresa provides cash transfers, in-kind health bene�ts and nutritional suple-

ments to bene�ciary families. Moreover, the delivery of the cash transfers is exclu-

sively through the mothers, and is linked to children's enrollment and school atten-

dance. This conditionality works as follows: in localities where Progresa operates,
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those households classi�ed as poor with children enrolled in grades 3 to 9, are el-

igible to receive the grant every two months. The average bi-monthly payment to

a bene�ciary family amounts to 20 percent of the value of bi-monthly consumption

expenditures prior to the beginning of the program. Moreover, these grants are esti-

mated taking into account the opportunity cost of sending children to school, given

the characteristics of the labor market, household production, and gender di�erences.

By the end of 2002, nearly 4.24 million families (around 20 percent of all Mexican

households) were incorporated into the program. These households constitute around

77 percent of those households considered to be in extreme poverty.

Because of logistical and �nancial constraints, the program was introduced in sev-

eral phases. The sequentiality of the program was capitalized by randomly selecting

506 localities in the states of Guerrero, Hidalgo, Michoacan, Puebla, Queretaro, San

Luis Potosi and Veracruz. Of the 506 localities, 320 localities were assigned to the

treatment group and the rest were assigned to the control group. In total 24,077

households were selected to participate in the evaluation sample. The �rst evaluation

survey took place in March 1998, 2 months before the distribution of bene�ts started.

3 rounds of surveys took place afterwards: October/November 1998, June 1999 and

November 1999. The localities that served as control group started receiving bene�ts

by December 2000. However, as noticed by Buddelmeyer and Skou�as (2004), in the

treatment localities 27% of the eligible population had not received any bene�ts by

March 2000 due to some administrative error.

8.2 Poverty Treatment E�ects

Let us introduce some basic notation that will be helpful for the rest of the section.

There are two potential states of the world, (y1; y0), for each individual, where y1 and

y0 are the outcomes that an individual would obtain if she were and she were not,

respectively, a bene�ciary of PROGRESA. Lets denote observed outcome by y and
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program participation by the indicator variable d, where d = 1 if the individual

participates in the program, and d = 0 otherwise. The policymaker observes (y; d),

but he cannot observe both states (y1; y0). Formally, the policymaker observes the

random variable y = dy1 + (1� d)y0.

We are interested in the poverty treatment e�ect (PTE) on the treated. This

e�ect is given by:

� = �(F (y1 j d = 1); z)� �(F (y0 j d = 1); z)

Where F (y1 j d = 1) is the distribution of the outcome of interest for the treated

group, and F (y0 j d = 1) is its counterfactual. Randomization guarantees the identi-

�cation of PTE since we have F (y0 j d = 1) = F (y0 j d = 0).

As it was mentioned above, in the case of PROGRESA we have a problem of mea-

surement error for the treatment group since a proportion of the households selected

as bene�ciaries had not received the cash transfer by the year 2000. Applying the

model of section 3 to the current setting, let each individual in the treatment group

be characterized by the tuple (y11; y10), where y11 and y10 are the outcomes that an

individual randomized in the treatment group would obtain if she were and she were

not, respectively, participating in PROGRESA. Instead of observing y11, one observes

a contaminated variable y1 de�ned by

y1 � wy11 + (1� w)y10 (29)

From section 3 we know that F (y11) = F (y1 j d = 1) cannot be point identi�ed if

E(w) < 1. However, it can be partially identi�ed if we possess some information on

the marginal probability of data errors p = P (w = 0), in particular if there exists a

non trivial upper bound on this probability.

If one assume that w is independent of y11, which is equivalent to say that data

from the treatment group is contaminated, then we can apply the results obtained in
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section 4 to �nd the identi�cation region for the PTE:

H[�] = [�l
�(F (y11); z)� �(F (y0 j d = 1); z);�u

�(F (y11); z)� �(F (y0 j d = 1); z)]

where � < 1 is as an upperbound on the probability of not receiving treatment when

the unit of analysis has been randomized in the treatment group.

Under the assumptions of proposition 7, the following con�dence interval, CI
[�l;�u]

 ,

asymptotically covers the PTE with at least probability 
:�
�̂l(F11)� �̂(F0)� z 
+1

2

q
�̂2
lF

n
+

�̂2F0
m
; �̂u(F11)� �̂(F0) + z 
+1

2

q
�̂2F11
n

+
�̂2F0
m

�
Table 1.1 presents an application of the present analysis to the PROGRESA data

set. Column 1 introduces a parameter measuring the severity of poverty for the FGT

poverty measure described below. We use consumption as welfare indicator, and the

poverty line z is set equal to the median consumption for the control group. We use

an upper bound on the proportion of errors of 0.27, the proportion of households who

had not received bene�ts from Progresa by 2000. Columns 2 and 3 presents treat-

ment e�ects on poverty and 95% con�dence intervals for this parameter, respectively,

without taking into consideration the contamination problem, that is to say, assuming

that the parameter is point identi�ed. Finally, columns 4,5, and 6 introduce, respec-

tively, upper and lower bounds on the PTE, and Bonferroni con�dence intervals for

the identi�cation region.

Table 1: Identi�cation regions and con�dence intervals for treatments e�ects on
poverty: PROGRESA 1999

� CI�0:95 �l �u CI
[�l;�u]
0:95

� = 0 -.068 [-.083,-.053] -0.278 0.092 [-0.296,0.105]

� =1 -0.039 [-.045,-.033] -0.148 0.009 [-0.153,0.015]

� = 2 -0.021 [-.025,-.017] -0.076 0.000 [-0.079,0.005]
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8.3 Monotone Treatment Response, Data Contamination, and

Missing Treatments

Monotonicity assumptions have been applied in other places to exploit their iden-

tifying power. Manski (1997) investigates what may be learned about treatment re-

sponse under the assumptions of monotone, semi-monotone, and concave-monotone

response functions. He shows that these assumptions have identifying power, particu-

larly when compared to the situation where no prior information exists. In a missing

treatments environment, Molinari (2005b) shows that one can extract information

from the observations for which treatment data are missing using monotonicity as-

sumptions.

Given the design of PROGRESA, one should expect that the outcome of interest

(in our case consumption per capita) increases with program participation. More

formally, we should expect that y11 � y10. We have the following result

Proposition 8 Suppose that y11 � y10. Let it be known that p � � < 1. Then sharp

bounds for �(P11; z) and �(P1; z) are given by the identi�cation region

[�(U�; z);�(Q(y); z)]

PROOF: See Appendix.

Table 1.2 introduces the e�ect of the monotonicity assumption on the identi�cation

region for PTE. Clearly, considering the monotonic e�ect of Progresa on the treated

population improves the inferential analysis of PTE by considerably shrinking the

identi�cation region.
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Table 2: Identi�cation regions under monotonicity assumptions: PROGRESA 1999

�l �u CI
[�l;�u]
0:95

� = 0 -0.278 -.068 [-0.296,-.053]

� = 1 -0.148 -0.039 [-0.153,-.033]

� = 2 -0.076 -0.021 [-0.079,-.017]

9 Application: Measurement of Rural Poverty in

Mexico

The methodology developed in this paper is applied to the data obtained from

the 2002 Encuesta Nacional de Ingreso y Gasto de los Hogares (ENIGH) held by

INEGI (2002). This household income and expenditure survey is one of a series of

surveys that are carried out under the same days of each year using identical sampling

techniques.

The households are divided into zones of high and low population density. Low

density population zones are those areas with fewer than 2500 inhabitants. It is

common to identify these areas as rural ones. The rest of the zones (those with more

than 2500 inhabitants) are identi�ed as urban areas. The sample is representative for

both urban and rural areas and at the national level. For the purposes of this study,

we will just concentrate on the rural sub-sample which includes 6753 observations.

We have considered the extreme poverty line for rural areas constructed by INEGI-

CEPAL for the 1992 ENIGH, following the methodology applied by the Ministry of

Social Development in Mexico (2002) to in
ate both the poverty line and all of the

data into August 2000 prices. The rural poverty line is equal to 494.77 monthly 2002

pesos. In this paper we have used per capita current disposable income as indicator

of economic welfare.10 It is divided into monetary and non-monetary income. The

monetary sources include wages and salaries, entrepreneurial rents, incomes from

10Due to lack of information, a �nal transformation of the original data was required: we will
assume that each household member obtains the same proportion of total income as the others.
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cooperatives, transfers, and other monetary sources. Non-monetary incomes include

gifts, autoconsumption, imputed rents, and payments in kind.

The identi�cation regions and the three di�erent 95% con�dence intervals for the

class of FGT poverty measures are presented for both the contamination and the

corruption models in Tables 1.3 and 1.4, respectively. We have no estimate of the

frequency of data errors in the sample, so we present a sensitivity analysis using

di�erent values of �. The �rst con�dence interval corresponds to the point identi�ed

case (� = 0). It is based on the point estimator � 1.96 times its standard error. The

second con�dence interval is equal to the estimator of the lower bound minus 1.96,

and the estimator of the upper bound plus 1.96 times their standard errors. The

third con�dence interval is the adjusted interval for the parameter CN . We found

that there is almost no di�erence between the last two types of con�dence intervals,

that is to say, between the con�dence interval covering the entire identi�cation region

and the one that provides the appropriate coverage for the poverty measure.

10 Conclusions

This paper has introduced the problems of data contamination and data corrup-

tion into the context of poverty measurement. When a proportion of the data is

measured with error, a poverty measure cannot be point identi�ed. However, we

have shown that for the class of additively separable poverty measures it is possible

to �nd identi�cation regions under very mild assumptions. In particular, if there is

an upper bound on the proportion of errors, we can obtain identi�cation regions that

take the form of closed intervals.

We consider the problem of statistical inference when a poverty measure is not

point identi�ed. Two type of con�dence intervals are applied in the present study.

For the �rst type, we have developed Bonferroni's con�dence intervals that cover the
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Table 3: Identi�cation regions and con�dence intervals for FGT poverty measures
under contamination model: Rural Mexico, 2002

� �L
�� �U

�� CI�0:95 CI
[�L;�U ]
0:95 CI

�

0:95

� = 0
0.00 0.287 0.287 [0.276, 0.298]
0.01 0.282 0.289 [0.271, 0.300] [0.272, 0.299]
0.02 0.275 0.292 [0.265, 0.304] [0.266, 0.302]
0.03 0.268 0.294 [0.257, 0.306] [0.259, 0.304]
0.05 0.252 0.299 [0.241, 0.311] [0.243, 0.309]
0.07 0.234 0.304 [0.223, 0.316] [0.225, 0.314]
0.10 0.209 0.312 [0.198, 0.325] [0.200, 0.323]

� = 1
0.00 0.093 0.093 [0.089, 0.098]
0.01 0.088 0.094 [0.084, 0.099] [0.085, 0.098]
0.02 0.083 0.095 [0.079, 0.100] [0.080, 0.099]
0.03 0.077 0.096 [0.074, 0.101] [0.074, 0.100]
0.05 0.066 0.097 [0.062, 0.103] [0.063, 0.102]
0.07 0.055 0.099 [0.052, 0.106] [0.053, 0.105]
0.10 0.042 0.101 [0.039, 0.109] [0.040, 0.108]

� = 2
0.00 0.042 0.042 [0.040, 0.045]
0.01 0.038 0.043 [0.036, 0.046] [0.036, 0.045]
0.02 0.034 0.043 [0.032, 0.047] [0.033, 0.046]
0.03 0.031 0.043 [0.029, 0.048] [0.029, 0.047]
0.05 0.024 0.044 [0.022, 0.049] [0.022, 0.048]
0.07 0.018 0.045 [0.016, 0.050] [0.017, 0.050]
0.10 0.011 0.046 [0.010, 0.053] [0.011, 0.052]

entire identi�cation region with some �xed probability. The second type applies and

extends the results of Imbens and Manski (2004) by covering the true value of a

poverty measure with at least some �xed probability. We also consider the problem

of poverty comparisons, extending the methodology developed in the �rst part of the

paper to a setting where two populations are compared in terms of poverty.

The results obtained in the paper are illustrated by means of two applications.

The �rst application analyzes the e�ect of contaminated data on poverty treatment

e�ects for an anti-poverty program in Mexico. The second application is a sensitivity

analysis for the measurement of rural poverty in Mexico under di�erent degrees of
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Table 4: Identi�cation regions and con�dence intervals for FGT poverty measures
under corruption model: Rural Mexico, 2002

� �L
�� �U

�� CI�0:95 CI
[�L;�U ]
0:95 CI

�

0:95

� = 0
0.00 0.287 0.287 [0.276, 0.298]
0.01 0.279 0.296 [0.268, 0.307] [0.270, 0.306]
0.02 0.270 0.307 [0.259, 0.318] [0.261, 0.316]
0.03 0.260 0.316 [0.250, 0.327] [0.251, 0.325]
0.05 0.239 0.334 [0.229, 0.345] [0.231, 0.344]
0.07 0.218 0.352 [0.208, 0.364] [0.209, 0.362]
0.10 0.188 0.381 [0.179, 0.393] [0.180, 0.391]

� = 1
0.00 0.093 0.093 [0.089, 0.098]
0.01 0.087 0.103 [0.083, 0.108] [0.084, 0.107]
0.02 0.081 0.113 [0.077, 0.118] [0.078, 0.117]
0.03 0.075 0.123 [0.071, 0.128] [0.072, 0.127]
0.05 0.063 0.142 [0.059, 0.148] [0.060, 0.147]
0.07 0.051 0.162 [0.048, 0.168] [0.049, 0.167]
0.10 0.038 0.191 [0.035, 0.198] [0.036, 0.197]

� = 2
0.00 0.042 0.042 [0.040, 0.045]
0.01 0.038 0.052 [0.036, 0.055] [0.036, 0.055]
0.02 0.034 0.062 [0.032, 0.066] [0.032, 0.065]
0.03 0.030 0.072 [0.028, 0.076] [0.028, 0.075]
0.05 0.022 0.092 [0.021, 0.097] [0.021, 0.096]
0.07 0.016 0.112 [0.015, 0.117] [0.015, 0.116]
0.10 0.010 0.141 [0.009, 0.147] [0.010, 0.146]
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data contamination and data corruption. The two empirical applications show the

importance of considering these types of data errors, when it is pertinent, to get a

more accurate measurement of the phenomenon of poverty.
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11 Appendix: Proofs

Proof of Proposition 1.1: We need to show that �(U�; z) � �(P ; z) and

�(L�; z) � �(P ; z) for all P 2 P�. Set  (y; z) = ��(y; z), so  (y; z) is a non-

decreasing function. By lemma 1.1, it su�ces to prove that U� stochastically domi-

nates every member of P� and L� is stochastically dominated by every member of that

set. The rest of the proof is identical to proposition 4 in Horowitz and Manski (1995)�

Proof of Proposition 1.2: Take any probability distribution Q in P . Clearly,
the identi�cation breakdown point for the head-count ratio is given by

�H = minfHQ; 1�HQg

Since �j(y; z) = 0 for all y � z and j 2 D, we have that � j = HQ for all poverty

measures in D. Next, I claim that ��j � 1 � HQ. Assume, towards a contradiction,

that ��j < 1 � HQ. De�ne �� =
�
�
j+1�HQ

2
and let �(cj) be the Dirac measure at cj.

Clearly, we have

�j(L��j
; z) � �j(L�� ; z) � �j(L1�HQ

; z) � �j(�(cj); z) = cj

A contradiction. Hence, f��j ; � j g � fHQ; 1 � HQg for all j 2 D, and the result

follows.�

Lemma 2 Let P1 and P2 be two probability measures on (R;B), with B the Borel

sets of R. De�ne the sets A1, A2, A3, where R = A1 [A2 [A3, supA2 � infA3,

A1 \Ai = ?, i = 2; 3, and

� = f(P1; P2) : P1(A) = P2(A);8A 2 B \A1;P1(A3) = P2(A2) = 0g

Let �(x) : R! R be a measurable function and suppose there exists some z 2 A1[A2

with �(x) = 0 for all x � z, and �(x) � 0, otherwise. Then:

i) F2 �rst order stochastically dominates F1, where F2 and F1 are the distribution

functions implied by probability measures P2 and P1, respectively.
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ii) EP2(�(x)) � EP1(�(x)), 8(P1; P2) 2 �

PROOF:

i) Straightforward

ii) Because �(x) = 0 for all x 2 A3, we have:

EP1(�(x)) =
R
A1
�(x)dP1 +

R
A2
�(x)dP1

EP2(�(x)) =
R
A1
�(x)dP2 +

R
A2
�(x)dP2

Therefore, EP2(�(x)) � EP1(�(x)) i�R
A1
�(x)dP2 +

R
A2
�(x)dP2 �

R
A1
�(x)dP1 +

R
A2
�(x)dP1

,R
A2
�(x)dP2 �

R
A2
�(x)dP1

Since P2(A2) = 0 and �(x) � 0 the result follows.�

De�nition 4 A class G of subsets of 
 is called a �-system if

i) 
 2 G
ii) If G1; G2 2 G and G1 � G2 then D1 nD2 2 G.
iii) If fGng is an increasing sequence of sets in G, the S1n=1Gn 2 G

Lemma 3 (Sierpinski 1928) If F is stable under �nite intersections, and if G is a

�-system with G � F , then G � �(F)

Proof of Proposition 1.3: De�ne �(y) = �2(y; z)� �1(y; z). We have

m2 =

Z
�2(y; z)dL� �

Z
�2(y; z)dU�

=

Z
�1(y; z)dL� +

Z
�(y)dL� �

Z
�1(y; z)dU� �

Z
�(y)dU�

= m1 +

Z
�(y)dL� �

Z
�(y)dU�

31



By construction, there exist sets A1;A2 and A3 in R such that R = A1 [ A2 [ A3,

supA2 � infA3, and PL�(A3) = PU�(A2) = 0. Moreover, �(y) � 0 for all y.

By lemma 1.2, it su�ces to show that (PL� ; PU�) 2 �. We have four cases: A1 =

[minfr(�); r(1��)g;maxfr(�); r(1��)g], A1 = (minfr(�); r(1��)g;maxfr(�); r(1�
�)g],A1 = [minfr(�); r(1 � �)g;maxfr(�); r(1 � �)g), and A1 = (minfr(�); r(1 �
�)g;maxfr(�); r(1��)g). I will analyze just �rst case. A similar argument works for

the other three. De�ne the setsA2 = (�1;minfr(�); r(1��)g)A3 = (maxfr(�); r(1�
�)g;1), and A1 = [minfr(�); r(1��)g;maxfr(�); r(1��)g]. By inspection, we have
PL�(A3) = PU�(A2) = 0. Let B(A1) be the Borel sigma-�eld on A1. I will show that

PL�(A) = PU�(A) for all A 2 B(A1) by applying a generating class argument. Write

E for the class of all intervals (minfr(�); r(1 � �)g; t], with t 2 A1. The following

series of claims proves this result:

Claim 1: �(E) = B(A1)

LetO stand for the class of all open subsets ofA1, so B(A1) = �(O). Each interval
(minfr(�); r(1 � �)g; t] in E has a representation

T1
n=1(minfr(�); r(1 � �)g; t + 1

n
).

�(O) contains all open intervals, and it is stable under countable intersections. Hence,
E � B(A1). On the other hand, each open interval (a; t) on A1 has a representation

(a; t) =
S1
n=1(minfr(�); r(1��)g; t� 1

n
]
T
(minfr(�); r(1��)g; ; a]c, so O � �(E) and

thus �(E) = B(A1).

Claim 2: D = fA 2 B(A1) : PU�(A) = PL�(A)g is a �-system
i) A1 2 D follows from the fact that PU�(A1) = PL�(A1)g. ii) Let A1; A2 2 D. By

the properties of a probability measure, Pi(A1

T
Ac2) = Pi(A1)+Pi(A

c
2)�Pi(A1

T
Ac2),

i = 1; 2. P1(A1

T
Ac2) = P2(A1

T
Ac2) follows after some algebraic manipulations.

Finally, we need to show that D is closed under increasing limits. Let fAng be an

increasing sequence of sets in D and A =
S1
n=1An. De�ne a sequence of indicator

functions f1Ang. Clearly, this is a positive and increasing sequence of functions. By

the Monotone Convergence Theorem

32



lim
n!1

EPU� (1An) = EPU� (1A)

= EPL� (1A)

= lim
n!1

EPU� (1An)

hence PU�(A) = PL�(A).

Claim 3: D � E
By inspection, PL�((minfr(�); r(1� �)g; t]) = PU�((minfr(�); r(1� �)g; t]) for all

t 2 A1.

Since E is stable under �nite intersections, by lemma 1.3 and claims 1, 2, and 3

we have D � �(E) = B(A1). Hence D = B(A1).�

Proof of Corollary 1.1: By Proposition 1.2 it su�ces to show that �1(y; z) �
�2(y; z) for all y 2 (0; z). By continuity and monotonicity of �1(y; z) on [0; z] there

exists � 2 (0; 1) such that �1(y; z) = ��1(0; z) + (1 � �)�1(z; z) for all y 2 (0; z).

Therefore

f � �1(y; z) = f(��1(0; z) + (1� �)�1(z; z))

� �f � �1(0; z) + (1� �)f � �1(z; z)

� ��1(0; z) + (1� �)�1(z; z)

= �1(y; z)

Where I have made use of the convexity of f .�

Proof of Corollary 1.3: Condition iv) is equivalent to have �1 = f � �2 with
f 0 > 0 and f 00 > 0 (Pratt 1964). The result follows from corollary 1.1.�

Before proving the rest of Lemmas and Propositions, we introduce a number of

preliminary results. Let y1; y2; : : : ; yn be i:i:d: random variables with distribution
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function F (y), and let y(1); y(2); : : : ; y(n) denote the order statistics of the sample.

Consider the trimmed mean given by

Sn =
1

[(� � �)n]

[�n]X
i=[�n]+1

y(i) (30)

where 0 � � < � � 1 are any �xed numbers and [�] represents the greatest integer
function. Let r(�) and r(�) be continuity points of F (y). Further, de�ne

G(y) =

8>>>><>>>>:
0 if y < r(�)

F (y)��
��� if r(�) � y < r(�)

1 otherwise

and set

� =

Z 1

�1
ydG(y) (31)

�2 =

Z 1

�1
y2dG(y)� �2 (32)

Lemma 4 (Stigler 1973) Assume E(y2) <1, then

n
1

2 (Sn � �)
d�! N(0; (1� �)�2((1� �)�2 + (r(�)� �)2�(1� �))) if � = 1.

n
1

2 (Sn � �)
d�! N(0; (�)�2((�)�2 + (r(�)� �)2�(1� �))) if � = 0.

Lemma 5 (de Wet 1976) Assume E(jyj3) <1, then

sup
���P�pN (Sn��)

�
< x

�
� �(x)

��� �! 0 if � = 1.

sup
���P�pN (Sn��)

�
< x

�
� �(x)

��� �! 0 if � = 0.

Proof of Proposition 1.4: De�ne the events

An =

�
�l : �l � �̂l � z 
+1

2

�̂lp
n

�

Bn =

�
�u : �u � �̂u + z 
+1

2

�̂up
n

�
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From the de�nition of the con�dence interval, CI
[PL;PU ]

 , and Bonferroni's inequal-

ity

P([�l;�u] � CI
[�l;�u]

 ) = P(An \Bn) � P(An) + P(Bn)� 1

By lemma 1.4
p
n(�̂i��i)

�̂i

d�! N(0; 1), i = u; l. Thus

limn!1 Pr([�l;�u] � CI
[�l;Pu]

 ) � 


and the result follows.�

Proof of Proposition 1.5: The result is a direct consequence of lemma 1.5, and

Lemma 4 in Imbens and Manski (2004). �

Lemma 6 If Xn
d�! X = N(�1; �

2
1) and Ym

d�! Y = N(�2; �
2
2), and if Xn is

independent of Ym for all n and m, then Xn + Ym
d�! N(�1 + �2; �

2
1 + �22).

Proof: Let Zn;m = Xn + Ym. By independence of Xn and Ym, its characteristic

function can be written as

'Zn;m(u1; u2) = 'Xn(u1)'Ym(u2)

By the Uniqueness Theorem we have

lim
n;m!1

'Xn(u1)'Ym(u2) = exp(iu1�1 � u21�
2
1

2
) exp(iu2�2 � u22�

2
2

2
)

= exp(
2X
j=1

iuj�j � 1

2

2X
j=1

u2j�
2
j )

This expression corresponds to the characteristic function of the random vector Z =

(X; Y ), where Z is Gaussian. Moreover, X and Y are independent since Cov(X; Y ) =

0. The result follows. �

Proof of Proposition 1.7: De�ne the events

An;m =
n
�lA � �uB : z 
+1

2

p
m

n+m
�̂lA +

n
n+m

�̂uB � Yn;m

o
Bn;m =

n
�uA � �lB : �z 
+1

2

p
m

n+m
�̂lA +

n
n+m

�̂uB � Wn;m

o
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Where Yn;m =
p

nm
n+m

(�̂lA� �̂uB��lA+�uB) andWn;m =
p

nm
n+m

(�̂uA� �̂lB��uA+

�lB). Notice that Lemma 1.4 implies

i) limn;m!1
p

nm
n+m

(�̂iA��iA) = limn;m!1
p

m
n+m

p
n(�̂iA��iA)

d�! N(0; ��2iA),

i = l; u

ii) limn;m!1
p

nm
n+m

(�̂iB ��iB) = limn;m!1
p

n
n+m

p
m(�̂iB ��iB)

d�! N(0; (1�
�)�2iB), i = l; u

By applying Lemmas 1.4 and 1.7 together it is easy to show that Yn;m
d! N(0; ��2lA+

(1� �)�2uB) and Wn;m
d! N(0; ��2uA+(1� �)�2lB). By Bonferroni's inequality we have:

P([Dl; Du] � CI
[Dl;Du]

 ) � P(An;m) + P(Bn;m)� 1

Hence limn;m!1 P([Dl; Du] � CI
[Dl;Du]

 ) � 
 �

Proof of Proposition 1.8: From Proposition 1 in Horowitz and Manski (1995)

P11(y1) 2 P11(�) � P \
�
Q(y)� ��00

1� �
: �00 2 P

�

For all x 2 R, de�ne the indicator functions 1(y11 � x) and 1(y10 � x). By the

monotonicity assumption

1(y1 � x) � 1(y � x)

Taking expectations at both sides of this inequality, we have that

P (y1 � x) � Q(y � x)

for all x 2 R. This imposes a restriction on the set P11(�) since all of the distributions

in this set must stochastically dominate the observed distribution Q(y). Hence

Max

�
0;
Q(y � x)� ��00(y0 � x)

1� �

�
� Q(y � x)

for all x 2 R. After some algebraic manipulations, we obtain that Q(y � x) �
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�00(y0 � x), which provides a restriction on the set of feasible distributions �00.

De�ne the set of distribution functions stochastically dominated by Q(y) by

D = f�00 2 P : �00(y0 � x) � Q(y � x); 8xg

one can characterize the identi�cation region for the distribution F (y11) under the

monotonicity assumption as follows:

P (y11) 2 PM
11 (�) � P \

�
Q(y)� ��00

1� �
: �00 2 D

�

To prove the proposition, we just need to show that Q(y) 2 PM
11 and that this distri-

bution is stochastically dominated by all other distributions in PM
11 The �rst condition

is trivially satis�ed by de�ning �00 = Q(y), and hence we have that Q(y) 2 PM
11 (�).

Next, assume, towards a contradiction, that there exists some distribution in PM
11 (�)

that does not stochastically dominate Q(y). Then, for some x 2 R and some �000 2 D,
we have

Min

�
1;
Q(y � x)� ��000(y0 � x)

1� �

�
> Q(y � x)

From whereQ(y � x) > �000(y0 � x), or 1 > Q(y � x) > 1+�(1��00), a contradiction
since �000 2 D and �00 is a probability measure.�
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