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Switching Asymmetric GARCH and Options on a Volatility Index
Abstract

Few proposed types of derivative securities have attracted as much attention and
interest as option contracts on volatility. Grunbichler and Longstaff (1996) is the only
study that proposes a model to value options written on a volatility index. Their model,
which is based on modeling volatility as a GARCH process, does not take into account
the switching regime and asymmetry properties of volatility. We show that the Grun-
bichler and Longstaff (1996) model underprice a 3-month option by about 10%. A
Switching Regime Asymmetric GARCH is used to model the generating process of se-
curity returns. The comparison between the switching regime model and the traditional
uni-regime model among GARCH, EGARCH, and GJR-GARCH demonstrates that a
switching regime EGARCH model fits the data best. Next, the values of European
call options written on a volatility index are computed using Monte Carlo integration.
When comparing the values of the option based on the Switching Regime Asymmetric
GARCH model and the traditional GARCH specification, it is found that the option
values obtained from the different processes are very different. This clearly shows that
the Grunbichler-Longstaff model is too stylized to be used in pricing derivatives on a
volatility index.
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Switching Asymmetric GARCH and Options on a Volatility Index

Few proposed types of derivative securities have attracted as much attention and

interest as option contracts on volatility. The objective of this paper is to show that

pricing options on a volatility index demands extreme care in modeling the underlying

process. Grunbichler and Longstaff (1996), or G-L, is the only paper that proposes

a model to value options on a volatility index. Their model is based on a GARCH

specification for the underlying asset. It is argued that the GARCH specification leads

to severe mispricing in the option value because it does not allow for regime switching

and volatility asymmetry (leverage effect). No volatility options data is available, since

those derivatives are not traded yet. Hence, we cannot use real prices to test the option

pricing models. For that reason, we use simulation to obtain our results. Nevertheless,

it is argued that it is more useful to explore and test option pricing models before the

derivatives are introduced and traded, rather than after they are already priced in the

market.

Ever since Mandelbrot (1963) suggested that “large changes tend to be followed

by large changes - of either sign - and small changes tend to be followed by small

changes”, a number of papers have illustrated that stock variance exhibits temporal

dependence (for example, Akgiray, 1989). To capture this feature, Engle (1982) develops

a new class of stochastic processes, the AutoRegressive Conditional Heteroscedasticity

(ARCH) models, in which the conditional variance is a function of past residuals. It

has been shown that allowing the conditional variance to be time-varying generates fat

tails for the distribution of returns. Bollerslev (1986) introduces the Generalized ARCH

(GARCH) which extends Engle’s ARCH by allowing the conditional variance to be a

function of the lagged variance. Bollerslev (1986) shows that the GARCH model allows

a better representation of the volatility process while being more parsimonious.

Another important stylized fact of stock returns is that their volatility tends to rise
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in response to “bad news” (excess returns lower than expected) and fall in response

to “good news” (excess returns higher than expected). This is also known in the lit-

erature under the name of “volatility asymmetry” or “leverage effect”, since leverage

provides at least a partial explanation. As the price of a stock decreases, the firm lever-

age will increase, assuming that debt value did not decrease by as much. Since the

volatility of equity is an increasing function of leverage, this provides a simple explana-

tion for asymmetry (Black, 1976). Another explanation was given by French, Schwert,

and Stambaugh (1987). They argue that the negative relation between volatility and

stock prices is due to the fact that an increase in unexpected volatility will increase

the expected future volatility (assuming persistence). Then, the risk premium will also

increase causing prices to drop. Nelson (1991) introduces the EGARCH model (Ex-

ponential GARCH) to account for volatility asymmetry. Also, Glosten, Jagannathan,

and Runkle (1993) introduce an alternative specification know as the GJR-GARCH (see

Bollerslev, Chou, and Kroner, 1992 for an extensive review of the literature).

Recently, Cai (1994) and Hamilton and Susmel (1994) introduce the Markov-Switching

Regime ARCH (SWARCH) model that incorporates the features of both Hamilton’s

(1988, 1989) switching regime model and Engle’s ARCH model. Hamilton’s switching

regime model can be described as an autoregressive process in which the parameters

of the autoregression can change as the result of a regime-shift variable. The regime

itself will be described as the outcome of an unobserved Markov chain. The basic idea

is to allow the data generating process to be different in different regimes. The ex-

istence of multiple regimes is a pervasive phenomenon in financial economics. More

recently, Switching-regime models have been applied to stock market returns (Norden

and Schaller, 1993), foreign stock markets (Rockinger, 1994, Norden, 1995, and Bollen,

Gray and Whaley, 2000), and interest rates (Gray, 1996a, 1996b, Ang and Bekaert,

1998, Dahlquist and Gray, 2000).

In this paper, we extend the SWARCH model to a Markov Switching Regime Asym-
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metric GARCH (SW-Asymmetric GARCH). The SW-Asymmetric GARCH allows both

regime switching in volatility and asymmetry. It is argued that the additional effort re-

quired in estimating the model is justified by the benefit of providing a richer modeling

of the volatility dynamics.

The remainder of this paper is organized as follows. The next section describes

volatility indices and options written on volatility indices. The following section presents

a brief exposition of the Grunbichler and Longstaff (1996) model, and shows that the

assumed process for volatility is a continuous time limit of a GARCH model. Next

we present the general methodology used in assessing if the volatility process in G-L is

appropriate. The next section provides detailed discussion of the switching regime model

and the model selection criteria. The following section contains results from fitting the

volatility models, and rejects the GARCH specification in favor of those allowing for

switching regime and asymmetry. Next we show that option prices computed with

the G-L assumed process underprice volatility index options by a considerable amount.

Then, we provide further analysis and robustness checks. The final section concludes.

1. Options on a Volatility Index

Few proposed types of derivative securities have attracted as much attention and in-

terest as option contracts on volatility. Grunbichler and Longstaff (1996) cite various

sources including Reuters, the Wall Street Journal, Futures, Futures and Options World,

Barrons, etc., that discuss those derivatives. The underlying asset for those options is

the Market Volatility Index (VIX). VIX is an average of S&P 100 option (OEX) im-

plied volatilities. It was introduced by the Chicago Board Options Exchange (CBOE)

to provide an-to-the-minute measure of expected volatility of the US equity market1.

1Eight near-the-money, nearby, and second nearby OEX call and put options provide the inputs
for constructing the volatility index. First, the implied volatilities of the call and the put in each of
the four categories of options are averaged. Second, ”at-the-money” implied volatilities are created by
interpolating between the nearby and second nearby average implied volatilities. In this way, VIX is
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According to Duke Chapman, CBOE former chairman, the index is particularly suited

for institutional investors interested in hedging future, not past changes in portfolio risk

(see Vosti, 1993). Robert Whaley, the developer of the index declared that “the avail-

ability of an option contract on the CBOE Market Volatility Index will allow market

participants to manage the risks associated with unanticipated changes in volatility.”2

The CBOE has applied to the Securities and Exchange Commission to trade European

options on the Volatility Index. Yet, this operation was constantly delayed. The reason

for that seems to be that market makers are still trying to understand the implications

and risks involved in trading volatility derivatives. More recently, many European ex-

changes have introduced volatility indices in the hope of trading volatility derivatives

(two examples are the VX1 and VX6 volatility indices from MONEP in France and

the VLEU volatility index in Switzerland). Some exchanges have even started to trade

futures on volatility indices (VOLAX futures from the Deutsche Terminborse in Ger-

many, SEK volatility futures for the Swedish market, and FTSE volatility futures in the

United Kingdom). A better understanding of volatility options, and the way they should

be priced, will facilitate the introduction and adoption of volatility options worldwide.

This paper contributes in this direction.

2. The Grunbichler and Longstaff (1996) Model

Grunbichler and Longstaff (1996), or G-L, is the only paper to our knowledge that

presents a model to price options on a volatility index. The major assumption of their

model is that related to the specification of the dynamics of the underlying process, i.e.

always ”at-the-money.” Finally, a constant time to expiration is maintained. The nearby and second
nearby at-the-money volatilities are weighted to create a constant 30-calendar day (22-trading day) time
to expiration.

2Brenner and Galai (1989) and Whaley (1993) provide excellent discussions of how volatility deriva-
tives can be used to hedge the volatility risk of portfolios containing options or securities with option-like
features. See also Fleming, Ostdiek and Whaley (1995) and Whaley (2000) for a thorough analysis of
VIX.
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volatility. The volatility index, denoted V , is modeled as a mean reverting process

dV = (ω − κV )dt+ σ
√
V dZ, (2.1)

where ω, κ,and σ are constants, and Z is a standard Wiener process.

Since V is not the price of a traded asset, it is assumed that the expected premium

for volatility risk is proportional to the level of volatility, ζV where ζ is a constant

parameter.

The G-L model captures many of the observed properties of volatility. In particular,

the model allows volatility to be mean reverting and conditionally heteroskedastic.

We argue below that the G-L specification for volatility is indeed the continuous

time limit of a GARCH model. Nelson (1990) investigates the convergence of stochastic

difference equations for volatility models to stochastic differential equations as the length

of the discrete time intervals between observations goes to zero. We present the results

from Nelson’s (1990) derivation of the continuous time limits of a GARCH(1,1) in our

own notation.

A GARCH(1,1) model can be written as follows

ht = α+ δ1ht−1 + γε2t−1. (2.2)

where εt = h
1
2
t zt,

zt i.i.d. ∼ N(0, 1). (2.3)

ht is conditional volatility, and α, δ1,and γ are constant parameters.

Nelson (1990) derives diffusion limits of the form

dh = (ϕ−'h)dt+ ϑhdZ, (2.4)

where ϕ,',and ϑ are constant parameters, and Z is a standard Wiener process.
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As can be seen, the derived model in (2.4) is essentially the G-L specification. In

fact, GARCH models do imply mean reversion in volatility (the coefficients need to

sum to less than one for stationarity) and conditional heteroskedasticity (the change in

conditional volatility is larger for larger levels of volatility).

3. Is the Grunbichler and Longstaff (1996) Volatility Process Appropri-
ate?

The GARCH specification for the volatility process suffers from two major drawbacks.

The first one is that it does not allow for volatility asymmetry (leverage effect). The

second drawback is that it does not account for regime switching (regime shifts). The

objective of this paper is not to criticize the specific form of the volatility model in

G-L. Rather, we want to show that any model not accounting for the switching regime

and asymmetry properties will severely misprice (undervalue) volatility options. To

that end, we compare option prices computed using a simple GARCH process to those

computed using switching and asymmetric models3.

In the literature, many studies have derived closed form solutions for stock options

with stochastic volatility (Hull and White, 1987, Stein and Stein, 1991, Heston, 1993).

Those models came in response to the empirical evidence related to time-varying volatil-

ity. Also, stock option pricing models where stock volatility follows a GARCH process

have been derived by Duan (1995) and Heston and Nandi (1999). More recently, stud-

ies like Ritchey (1990), Billio and Pelizzon (1996), Bollen (1998), Duan, Popova and

Ritchken (1999), and Campbell and Li (1999) develop models obtained when the stock

dynamic is modeled by a Markov regime switching process. The regimes are character-

3The options we are interested in are written on a volatility index implied from options. The
volatility processes we simulate to compute the option prices represent the instantaneous (or a discrete
approximation to the instantaneous) volatility of the S&P 100 index. As Grunbichler and Longstaff
(1996) note, the volatility can be either the instantaneous volatility or the volatility implied from some
option pricing model - the distinction does not affect the form of the resulting valuation procedure. For
example, Taylor and Xu (1994) show that when volatility is stochastic, the volatility estimate implied
by inverting the Black-Scholes model is nearly a linear function of the actual instantaneous volatility.
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ized by different volatility levels. Those models differ from the previous ones in that

rather than permitting volatilities to follow a continuous time, continuous state process,

their focus is on cases where volatilities can take on a finite set of values, and can only

switch regimes at finite times. There is still very little work on volatility asymmetry as

applied to option pricing. Along those lines, Schobel and Zhou (1998) use Fourier in-

version techniques to price stock options allowing for correlation between instantaneous

volatilities and the underlying stock returns. This is a first step towards accounting for

volatility asymmetry4.

Many of the above studies are able to show that their model present an improvement

over Black and Scholes (1973) that is statistically significant. However, this improvement

is not economically large. On the other hand, in our case, the model in Grunbichler and

Longstaff (1996) will be shown to misprice option on volatility by a very large amount.

There are reasons to believe that mispecifying the volatility process when the option is

written on a stock index is much less serious than in the case where the option is written

on a volatility index. In the first case, the volatility process is a major determinant of

the underlying asset process. In the second case, the volatility process is the underlying

asset. Ignoring regime switching in the volatility process might not be too bad of an

approximation when pricing derivatives on a stock index, as long as volatility is allowed

to be stochastic. However, It is argued that ignoring regime switching and asymmetry

in volatility when pricing derivatives on a volatility index could be disastrous.

None of the above models can be used to price options on volatility. The only

model that can do that is that of G-L. Their model assumes that volatility follows a

stochastic process that is the continuous time analogue of GARCH. As argued before,

this process does not allow volatility asymmetry. Also, it does not allow the parameters

of the autoregressive process to be different for different regimes. We note that this
4Also, Walsh (1999) examines the effect of ignoring conditional volatility on the price of stock options.

He considers many GARCH models including asymmetric ones. He finds that asymmetric GARCH
effects exacerbate the bias in the price of the options.
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is a shortcoming that is common to all the option models reviewed above. Given the

large empirical evidence related to volatility asymmetry and regime switching, there are

reasons to suspect that volatility options priced under the GARCH or other “simple”

stochastic volatility assumptions will be significantly mispriced. It will be demonstrated

that the mispricing in the case of options on a volatility index is very large economically.

There are no analytic solutions for the price of options on a volatility index under

the assumption of volatility following a switching asymmetric autoregressive process.

Therefore, Monte Carlo integration is used to compute the option values. Also option

values for the G-L model are computed using Monte Carlo integration instead of using

analytic solutions. There are two reasons for that choice.

First, we want to conduct hypothesis testing from fitting the different processes to the

S&P 100 data. By using a GARCH process for the G-L model, we are able to compare

its fit to the data with that of other more rich volatility processes. As will be shown in

the next section, the GARCH model can be nested in the switching asymmetric GARCH

models, allowing for hypothesis testing for nested models (likelihood ratio). This will

allow us to test the hypothesis that the GARCH process is an adequate representation

of the data as compared to the more general processes.

The second reason why option prices for the G-L model are computed using Monte

Carlo integration is that the GARCH specification is widely used in the literature and

has been found to be flexible enough to fit the data well. The point is that using

the simple GARCH implies accepting the restrictive assumptions of no switching or

asymmetric properties in volatility. Those assumptions might be convenient to work

with in some contexts. However, we want to show that those assumptions are not

appropriate to use to price options on volatility.
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4. Switching Regime Asymmetric GARCH Models

4.1. Model Specification

The Switching Regime Asymmetric GARCH models used in this paper are part of

the family of Markov switching regime models (See chapter 22 of Hamilton, 1994). A

common finding using high-frequency financial data concerns the apparent persistence

implied by the estimates for the conditional variance functions. This has prompted

Bollerslev and Engle (1986) to introduce the class of integrated GARCH or IGARCH.

However, the intuitive appeal and fit of this model has raised questions. Cai (1994) and

Hamilton and Susmel (1994) have addressed the issue by proposing Markov switching

volatility models. They note that the persistence implied by the model in Bollerslev and

Engle (1986) is difficult to reconcile with the poor forecasting performance. Further, it is

argued that the poor forecasting performance and spuriously high persistence might be

related to structural change in the volatility process. This is related to Perron’s (1989)

observation that changes in regime may give the spurious impression of unit roots in

characterizations of the level of a series. For example, Cai (1994) and Hamilton and

Susmel (1994) find that volatility of returns appears to be much less persistent when one

models changes in the parameter through a Markov switching process. The SWARCH

model allows occasional shifts in the asymptotic variance of the ARCH process by

having the intercept term “switch” between different values depending on what volatility

regime the process is in. The traditional ARCH-type models rely on the assumption of

parametric homogeneity. This means that the parameters of the model remain the same

whether the market is in a calm regime or a volatile regime. What distinguishes periods

of high volatility from periods of low volatility is the size of the residual. On the other

hand, the SWARCH model allows the relation between the conditional volatility and the

explanatory variables (lagged residuals) to be different between periods of high volatility

and periods of low volatility. Kim and Kon (1999) provide evidence that the time-series
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properties of stock returns include both structural change and time dependence in the

conditional variance. The estimation of a SWARCH model determines the parameters of

the ARCH terms (which include different parameters for different regimes) along with

transition probabilities between the different regimes. Cai (1994) and Hamilton and

Susmel (1994) show that their model is better able to capture the behavior of returns

volatility than previous ARCH-type models. Since then, the SWARCH model has been

applied to international equity markets (Susmel, 1994, 1998a, and Fornari and Mele,

1997), and inflation time series (Susmel, 1998b). We follow Cai (1994) and Hamilton

and Susmel (1994) in adopting a Markov switching regime model. We believe that

this will account for volatility persistence in an appropriate manner. Cai (1994) and

Hamilton and Susmel (1994) propose and estimate a Switching-ARCH. The dynamic

lag structure, was restricted to an ARCH specification. This is a drawback since the

GARCH specification has been shown to be a better fit to financial data. We generalize

the SWARCH model to a GARCH specification. We are able to account for volatility

asymmetry by using an Asymmetric GARCH. Furthermore, we allow the persistence of

volatility and the asymmetry to be different between different regimes. This means that

when there is a change in the regime, the model that is used to generate conditional

volatility is replaced by a different model with different parameters.

Formally, let Rt be a vector of observed variables and let st denote an unobserved

random variable that can take on the values 1, 2, ..., C. Suppose that st can be described

by a Markov chain,

Prob(st = j| st−1 = i, st−2 = k, ...,Ωt) (4.1)

= Prob(st = j| st−1 = i) = πij ,

for i, j = 1, 2, ..., C. It is sometimes convenient to collect the transition probabilities
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in a (C ×C) matrix:

Π =


π11 π21 . . πC1
π12 π22 . . πC2
: : . . :

π1C π2C . . πCC

 (4.2)

Note that each column of Π sums to unity.

A useful representation for a Markov chain is obtained by letting ξt denote a random

(C×1) vector whose jth element is equal to unity if st = j and whose jth element equals

zero otherwise:

ξt =


(1, 0, 0, . ., 0)0 when st = 1
(0, 1, 0, . ., 0)0 when st = 2
:
:
(0, 0, 0, . ., 1)0 when st = C.

(4.3)

The variable st is regarded as the state or regime that the process is in at date

t. By this we mean that st governs that parameters of the conditional distribution of

Rt. The density of Rt conditional on its own lagged values as well as on the current and

previous q values for the state is of the form,

f(Rt| st, st−1, ..., st−q,Ωt),

The methods developed in Hamilton (1989) are used to evaluate the likelihood func-

tion for the observed data and make inferences about the unobserved regimes. In this

case, the returns Rt follow a process in the ARCH family whose parameters depend on

the unobserved realization of st, st−1, ..., st−q. The objective is to select a parsimonious

representation for the different possible regimes.

For a 2-regime switching model, C is equal to 2. In other words, the volatility of

security returns are assumed to be generated from two regimes which are different in

describing the underlying behavior.
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Bera and Higgins (1993) find that with a parametric specification of the conditional

variance function, there does not appear to be a density function that is suitable for

all security data. It is of interest to see if after allowing for regime switching, a normal

distribution for Rt will be adequate to fit the data5.

Since we focus on the influence of volatility on the price of options, we use the

simplest specification for the mean equation

Rt = µ+ εt, (4.4)

where εt = h
1
2
t zt, zt i.i.d.∼ N(0, 1). We use different specifications for the conditional

variance equation.

For GARCH(1,1),

ht = α+ δ1ht−1 + γε2t−1. (4.5)

For EGARCH(1,1),

ln(ht) = α+ δ1ht−1 + γ1|zt−1|+ γ2zt−1. (4.6)

For GJR-GARCH(1,1),

ht = α+ δ1ht−1 + γ1ε
2
t−1 + γ2St−1ε

2
t−1, (4.7)

where St = 1 if εt−1 < 0 and 0 otherwise.

As can be seen, ht is a function of Ωt. That is, the conditional variance is time depen-

dent and relies on past information. The (1,1) formulation (p = q = 1) is used because

it has consistently been found to model variance dynamics adequately (e.g. Bollerslev,

1986, Akgiray, 1989). Moreover, a natural specification is needed to avoid overfitting

the data. The focus is on highlighting the switching and asymmetry properties of the

5One of the benefits of the normality assumption is that the parameter estimates are asymptotically
unbiased, even if the true distribution is non-normal, provided the first two conditional moments are
correctly specified (Weiss, 1986). On the other hand, the t-distribution does not have this robust
property.
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data. The EGARCH and GJR-GARCH specifications allow for volatility asymmetry

(leverage effect). If there exists volatility asymmetry consistent with previous literature,

then we should find that γ2 < 0 in EGARCH(1,1) and γ2 > 0 in GJR-GARCH(1,1).

4.2. Model Estimation and Selection

The switching regime model is based on the discrete heterogeneity assumption. The

volatility of security returns has been shown to be persistent. However, this relationship

behaves differently between different regimes (see Cai, 1994). The underlying reasons

that causes this different behavior are unobservable but are highly related to regime

conditions. Our model is able to classify heterogeneity into a small finite number of

relatively homogeneous regimes (a calm regime and a volatile regime)6.

One of the difficulties in using switching regime models is deciding on how many

regimes are needed in the model. In practice, one can start with a small number

of regimes and add more provided the fit of the model is significantly improved. In

this paper, we use a two regime switching model because of the extreme difficulty in

estimating a model with a larger number of regimes7.

Let θ denote all unknown parameters, θ = (Π, µ, δ, γ). Let T be the sample size.

Let Prob(st = j|Ωt;θ) denote the inference about the value of st based on data obtained
through date t and based on a ”guess” of the population parameters θ (starting values).

Collect these conditional probabilities Prob(st = j|Ωt;θ) for j = 1, 2, .., C in a (C × 1)
vector denoted bξt|t.

Also, forecasts of how likely the process is to be in regime j in period t+1 are formed

given observations obtained through date t. These forecasts are collected in a (C × 1)
6The switching regime model is considered to be semi-parametric because knowledge of the distribu-

tion of the unobserved mixing variable is not required. Hence, we need not know which factors determine
Π, the matrix of transition probabilities.

7However, we are comfortable with that choice because in an earlier version of this paper, we com-
pared a more restrictive version of our model (i.i.d. mixtures) with three regimes and two regimes
respectively. We found that the model with two regimes was a better fit to the data.
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vector bξt+1|t, which is a vector whose jth element represents Prob(st+1 = j|Ωt;θ).
The optimal inference and forecast for each date t in the sample can be found by

iterating on the following pair of equations:

bξt|t = (bξt|t−1 ¯ ηt)

10(bξt|t−1 ¯ ηt)
, (4.8)

bξt|t+1 = Π · bξt|t. (4.9)

Here 10 represents a (1 × C) vector of 1s, and the symbol ¯ denotes element-by-

element multiplication. Given a starting value bξ1|0 and an assumed value for the popu-
lation parameter vector θ, one can iterate on the above two equations for t = 1, 2, .., T

to calculate the values of bξt|t and bξt+1|t for each date t in the sample. The log likelihood
function L(θ) for the observed data ΩT evaluated at the value of θ that was used to
perform the iterations can also be calculated as a by-product of this algorithm from

L(θ) =
TP
t=1
log f(Rt|Ωt−1;θ), (4.10)

where

f(Rt|Ωt−1;θ) = 10(bξt|t−1 ¯ ηt). (4.11)

Robust standard errors are computed to account for heteroskedasticity and serial

correlation. The likelihood ratio (LR) test, penalized AIC and BIC are used as selection

vehicles to compare models.

The LR test is a popular test for multiple parameter situations (see Kon, 1984).

The following models were tested against each others: GARCH, Switching Variance,

GJR-GARCH, EGARCH, SW-GARCH, SW-GJR-GARCH, and SW-EGARCH.

The model corresponding to the null hypothesis (H0) is nested within the model

corresponding to the alternative (H1). If H0 is true,

−2L(θ) = −2[L(θH0)− L(θH1)], (4.12)
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has an asymptotic chi-square distribution with degrees of freedom equal to p (the differ-

ence in the number of parameters between H0 and H1). However, the method may not

be appropriate for the switching model because the hypothesis is on the boundary of

the parameter space and this violates the standard regularity condition for Maximum

Likelihood. Böhning, Dietz, Schlattmann and Lindsay (1994) show that using LR test

is likely to underreject the false null when the boundary condition is involved. Hence,

the test tends to choose a small number of components. As alternative methods, we use

penalized Akaiki Information Criterion (AIC = −2L(θ)+2K) and Baysian Information
Criterion (BIC = −2L(θ) +Kln(N)). These methods are robust in a sense that they

are valid even when the model is misspecified. The model with the lowest value of AIC

or BIC is considered the best8.

5. Estimation Results and Hypotheses Testing

We use daily continuously compounded S&P 100 index (SP100) returns from the period

January 3, 1980 to March 26, 1999. Summary statistics are reported in Table I.

*********************************

***INSERT TABLE I ABOUT HERE***

*********************************

The t-test for skewness equal to zero is rejected at the 5% significance level, showing

that the distribution is significantly skewed. The table also demonstrates the existence

of excess kurtosis. The Ljung-Box statistic is used to check for serial dependence in

the conditional moments. The Ljung-Box statistic and first order autocorrelation tests

show significant serial correlations between squared residuals9.

8Sometimes, the conclusions drawn from AIC and BIC are not the same. This can happen because
BIC is more severe in penalizing non-parsimonious specifications than AIC.

9We test the standard deviation series of the S&P 100 index for non-stationarity. Using an Augmented
Dickey-Fuller test with 6 lags, we obtain a p-value of 0.000. Using a Phillips-Perron test with 6 covariance
lags, we get a p-value of 0.000. These results indicate that the hypothesis of non-stationarity is strongly
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Model selection tests for uni-regime and switching regime models among GARCH,

EGARCH, GJR-GARCH and "Switching Variance" are conducted. The ”Switching

Variance” model is one where the variance is fixed (not autoregressive) in each of the

regimes. In other words, the variance switches between two endogenously estimated

values depending on which regime is in place. The information criteria are implemented

to choose the model with the best fit. The results from the tests are listed in Table II.

*********************************

***INSERT TABLE II ABOUT HERE**

*********************************

According to panel A (LR test), the results unanimously reject the uni-regime hy-

pothesis in favor of the multi-regime model in all cases. Also, the results reject the

GARCH specification in favor of the asymmetric models. Moreover, the simple Switch-

ing Variance model is rejected in favor of the switching regime autoregressive variance

models (GARCH and asymmetric GARCH). The penalized AIC and BIC for all models

are presented in table II panel B. The results confirm that the uni-regime models and

the symmetric models are not an adequate representation of the data generating process

for volatility. The Markov Switching Regime EGARCH or SW-EGARCH represents the

best fit among the seven models. Also, the switching regime property seems to be more

important than asymmetry. This is because the model that has switching regime but

no asymmetry (SW-GARCH) is found superior to those with leverage but no switching

regime (EGARCH and GJR-GARCH).

The parameter estimates for the preferred SW-EGARCH model are shown in Table

III10.

rejected.
10To check if the estimated model is stable, simulated data (conditional volatility) from the model

are generated and tested for non-stationarity. The tests are made over 1000 replications. Using an
Augmented Dickey-Fuller with 6 lags, the largest p-value over the 1000 replications is 0.000. Using
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*********************************

***INSERT TABLE III ABOUT HERE**

*********************************

Bollerslev, Chou and Kroner (1992) suggest that the estimated volatility asymmetry

may be attributed to a few outliers. One advantage of the switching regime specifica-

tion is that it allows one component to adjust to these outliers, with the remaining

“normal” observations being estimated by another component. In this case, the influ-

ence of the outliers is isolated. Table III shows that γ2 is significantly negative in the

tranquil regime. The coefficient γ2 is large in the volatile regime, albeit not statistically

significant because of the large standard error. This seems to indicate that volatility

asymmetry is present in both the tranquil and volatile regimes. δ1 is larger in the

tranquil regime than in the volatile regime, which seems to indicate that the tranquil

regime exhibits more persistence than the volatile regime. This is consistent with liter-

ature that shows that removing exceptionally volatile observations (the 1987 crash for

example) increases the persistence parameters of ARCH models (see for example Blair,

Poon, and Taylor, 1998).

The standardized residual (ε̂t/
p
ĥt) diagnostics are reported at the bottom of Table

III. If the model is correctly specified, the null hypothesis of zero autocorrelation of

standardized residuals and squared standardized residuals should not be rejected. We

indeed find that Q(20) and Q2(20) are not significantly different from zero. The results

demonstrate that there is no evidence of autocorrelation in the squared residuals, which

suggests that the SW-EGARCH model provides an adequate description of the data.

The Jarque-Bera normality tests still reject the null of normality of standardized

residuals. However, comparing with the raw residuals in Table I, we can see that there

a Phillips-Perron with 6 covariance lags, the largest p-value over the 1000 replications is also 0.000.
Therefore, the tests show that the simulated data is indeed very stationary, which confirms that the
model is stable.
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is a dramatic reduction in the skewness and kurtosis.

The mean of the conditional variance of the first regime is found to be 0.000083.

That of the second regime is 0.000568. This clearly shows that the second regime is

much more volatile than the first regime. The ratio of the variances is about 6.8. The

unconditional probability of being in the tranquil regime is 0.783, which indicates that

during the period of interest (4861 days), roughly 1053 days were in the volatile regime.

6. Monte Carlo Integration of Option Prices

At this juncture, it has been shown that the SW-EGARCH specification for volatility is

a better fit to security returns than a simple GARCH. In this section, values for options

on volatility are computed using different specifications for the volatility process. The

objective is to assess the economic significance of the impact of the volatility index

properties on the value of the options. More specifically, we want to quantify the

difference in the options value between the different volatility specifications analyzed in

the previous section.

The focus is on the switching and asymmetry properties of volatility. However,

the issue of risk premium has to be addressed. As stated before, volatility is not a

traded asset. Therefore, a volatility option pricing model needs to account for that by

making assumptions about the expected premium for volatility risk. G-L assume that

it is proportional to the level of volatility. This paper focuses on the assumption for the

underlying process of volatility. Therefore, we want to show that regardless of the choice

of risk premium, the process in G-L leads to a severe mispricing in the options. To attain

this objective, option values that are discounted by the risk-free rate alone are computed.

This is done for simplicity. This is appropriate because we are not proposing a new

pricing model, but rather highlighting the impact of assumptions about the underlying

asset on the price of the options. All what is needed is to compare values computed

using different underlying processes irrespective of the discount factor. In fact, if those
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values are discounted using the same discount factor, the relative difference between the

values based on different underlying processes will remain the same. In the next section,

the results are replicated using a discount factor that incorporates a risk premium. It

is shown that in this case, the conclusions remain the same.

The procedure to compute option prices is as follows:

1- The parameters from the volatility models estimated previously are used to gen-

erate a simulated volatility index11.

2- The payoff at maturity of a European call option on the volatility process is

computed.

3- The payoff is discounted using the appropriate discount rate.

4- The procedure is repeated for 100,000 independent replications.

5- The value of the option is then computed as the average of all option discounted

payoffs at maturity over the 100,000 replications12.

Call option values are computed for different time to maturity (1 month to 12

months), different exercise prices (5 to 30), and different volatility index - underly-

ing asset - values (5 to 40). Figures 1, 3, and 5 present 3-Dimentional graphs depicting

option values from the SW-EGARCH for different sets of characteristics. Figures 2, 4,

and 6 provide 3-Dimentional graphs presenting the difference in option values between

11We use a technique known as “synchronization” (see Law and Kelton, 1991). This implies two
things. First, we adopt the same seed for the random number generator for each model. Second, we
make sure to adopt the same sequence of generation of random variates for each model. This is important
since we need to generate more random variates for the switching models to allow the random choice
of different regimes. For that reason, for the uni-regime models, we generate the same sequence of
random variates as for the switching models, but we simply discard those that are meant to determine
the regime. The result from “synchronization” is that the random variates used by each model are
identical. This ensures that the differences in option values will arise uniquely from the difference in
assumed volatility processes (as opposed to the random variates generated).
12Standard errors are also computed for each option value. Given that a large number of replications

(100,000) are made, the standard errors are extremely small compared to the difference between values
computed from different processes. For that reason, statistical significance holds for all our results. As
an indication, the largest standard error of any option value in our study is 0.0457. As will be seen,
this is dwarfed by the difference between option values computed with different volatility processes. For
that reason, the issue of statistical significance will be omitted throughout the exposition of the results.
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those based on the SW-EGARCH and those based on the GARCH process. This will

allow us to assess if the difference in option values between the two processes is large

enough as compared to the option values under SW-EGARCH. This will tell us if the

assumptions in G-L are acceptable approximations or not.

Figure 1 gives option values for different exercise prices and time to maturity.

*********************************

***INSERT FIGURE 1 ABOUT HERE**

*********************************

The volatility index value is fixed at 15. As expected, the option value is increasing

in time to maturity and decreasing in the exercise price. The more interesting figure

is figure 2. Figure 2 shows the difference in option values between the SW-EGARCH

specification and the GARCH model. The option characteristics (exercise prices and

time to maturity) are the same as in figure 1.

*********************************

***INSERT FIGURE 2 ABOUT HERE**

*********************************

A comparison of figures 1 and 2 shows that the differences in option values depicted

by figure 2 are large and economically significant for a wide range of characteristics (ex-

ercise prices and time to maturity). The process in G-L (GARCH) always underpredicts

the option value.

Figure 3 is similar to figure 1 in that it presents option values from the SW-EGARCH

process for different characteristics. However, the difference is that the characteristics of

interest are time to maturity and volatility index values (underlying asset). The exercise

price is fixed at 15.
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*********************************

***INSERT FIGURE 3 ABOUT HERE**

*********************************

The 3-Dimentional graph has an intriguing shape. This is due to the fact that the

underlying asset (volatility index) has the property of mean-reversion. For low values

of volatility index, the option value is increasing in time to maturity because the longer

the time to maturity the higher the chance that the volatility index will “mean-revert”

(increase) to its long run mean. On the other hand, for high values of volatility index, the

option value is decreasing in time to maturity because the longer the time to maturity

the higher the chance that the volatility index will “mean-revert” (decrease) to its long

run mean. Also, as expected, the option value is increasing in the volatility index values

for all maturities. Figure 4 shows the difference in option values between the SW-

EGARCH specification and the GARCH model. The option characteristics (volatility

index values and time to maturity) are the same as in figure 3.

*********************************

***INSERT FIGURE 4 ABOUT HERE**

*********************************

A comparison of figures 3 and 4 reveals that the differences in option values depicted

by figure 4 are large and economically significant for a wide range of characteristics

(volatility index values and time to maturity). The process in G-L (GARCH) almost

always underpredicts the option value. Also, the difference is larger for longer time to

maturity. This is an intuitive result since there is a higher likelihood of regime switching

in the volatility index the longer the time to maturity. This regime switching behavior

differentiates the SW-EGARCH from the GARCH process.
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Figure 5 is similar to figures 1 and 3 in that it shows option values from the SW-

EGARCH process for different characteristics. However, the difference is that the char-

acteristics of interest are exercise price and volatility index values (underlying asset).

Time to maturity is fixed at 3 months.

*********************************

***INSERT FIGURE 5 ABOUT HERE**

*********************************

Not surprisingly, the option value is increasing in exercise price and volatility index

values. Figure 6 shows the difference in option values between the SW-EGARCH model

and the GARCH specification. The option characteristics (volatility index values and

exercise price) are the same as in figure 5.

*********************************

***INSERT FIGURE 6 ABOUT HERE**

*********************************

Again, a comparison between figures 5 and 6 demonstrates that the differences in

option values depicted by figure 6 are large and economically significant for a wide range

of characteristics (volatility index values and exercise prices).

The evidence from figures 1 to 6 shows that the difference in option values between

the process used in G-L (GARCH) and a model that allows for volatility switching and

asymmetry (SW-EGARCH) is economically large and significant for a wide range of

characteristics (volatility index values, exercise price, and time to maturity). To confirm

this evidence in a more formal way, the difference in the option value between the two

processes is computed as a percent of the option values under the SW-EGARCH. This

will show the percentage point the model in G-L misprice the option as compared to

the SW-EGARCH. The percentage difference described above is computed for different
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maturities (1 to 12 months) by taking the average over all exercise prices (5 to 30)

and all volatility index values (5 to 40) within that maturity. The results from this

computation are graphed in figure 7. Another curve that uses the median (instead of

average) over all exercise prices and volatility index values is also graphed in figure

7 for robustness. The curves in figure 7 plot the percentage difference (mispricing or

undervaluation in this case) for different time to maturity.

*********************************

***INSERT FIGURE 7 ABOUT HERE**

*********************************

The percentage differences in figure 7 are all large ranging from 7.0% for a 1-month

option to 21.1% for a 12-month option (average). The numbers computed using the

median are even larger confirming our results. Again, the mispricing induced by the

process in G-L (GARCH) is shown to be most pronounced for long lived options. A

3-month option is mispriced (undervalued) by about 10% , which is large enough for

derivative traders to care about. This clearly shows that the G-L model is too stylized

to be used in pricing derivatives on volatility indices.

7. Further Analysis and Robustness

It is of interest to further analyze why the GARCH process is inappropriate. Which re-

strictions that are implicit in the GARCH process are those that make it inappropriate?

In other words, it is interesting to see the independent contribution of the asymmetry

and switching regime effects. Thus far, it is not clear which (or lack of which) con-

tributes most to the economically large and significant mispricing found previously. To

do that, the difference in option prices between the SW-EGARCH models and other

more restrictive ones is computed. The restrictive models used for comparison are the

SW-GARCH, EGARCH, GARCH and Switching Variance. The results are graphed in
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figure 8. The figure plots the difference in percent between the option prices computed

with SW-EGARCH and those with the competing model in question. As in figure 7,

the percentage difference described above is computed for different maturities (1 to 12

months) by taking the average over all exercise prices (5 to 30) and all volatility index

values (5 to 40) within that maturity.

*********************************

***INSERT FIGURE 8 ABOUT HERE**

*********************************

As can be seen from figure 8, the difference between prices from the Switching

Variance and the SW-EGARCH is very large (the underpricing is between 50% and

60%). This is not surprising given that the Switching Variance model is very restrictive

(disallows GARCH effects and asymmetry). The difference between the EGARCH and

the SW-EGARCH is also large (the underpricing is between 20% and 30%). This

indicates that the switching regime feature is very important. On the other hand, the

difference between the SW-GARCH and the SW-EGARCH is rather small (between

2% and 6%). This shows that the volatility asymmetry feature is much less important

than the regime switching in terms of option pricing. Finally, the underpricing from the

GARCH process (as compared to the SW-EGARCH) is less than that of the EGARCH.

This indicates that accounting for asymmetry without regime switching can make things

worse (especially for short maturities).

Next, the consequences on our previous results of relaxing the assumption that

volatility risk is not priced, is examined. G-L follow Wiggins (1987), Stein and Stein

(1991), and others in assuming that the expected premium for volatility risk is propor-

tional to the level of volatility, ζV where ζ is a constant parameter. This assumption

is similar to the implications of general equilibrium models such as Cox, Ingersoll and

Ross (1985), Hemler and Longstaff (1991), and Longstaff and Schwartz (1992), in which
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risk premia in security returns are proportional to the level of volatility. We replicate

the results in figure 7 for the case where volatility risk is priced. The only difference

in option prices computed in this section from those presented before is in the discount

factor. Previously, the discount factor was assumed to be the risk-free rate. In this sec-

tion however, the discount factor is defined to be the risk-free rate plus a risk premium.

The risk premium is a linear function of the level of volatility (ζV ). ζ is chosen to be

equal to 0.25. The choice of this coefficient is somewhat arbitrary. However, it seemed

to deliver realistic risk premia for different levels of volatility. Moreover, we checked

the robustness of our results by trying a wide range of values for ζ. The results were

extremely close. Figure 9 replicates the results from figure 7 with the addition of the

risk premium described above.

*********************************

***INSERT FIGURE 9 ABOUT HERE**

*********************************

A comparison between the two figures reveals that they are very similar. Essentially,

the mispricing between the GARCH and the SW-EGARCH processes are as described

before. There is a very small decrease in the mispricing when the risk premium is taken

into account (less than 1% in all cases). Therefore, assuming a risk premium as opposed

to just using the risk-free rate does not alter our results.

Finally, we analyze Volatility Index data (VIX). We want to make sure that the SW-

EGARCH is also a better fit than GARCH in the case of VIX. Since the options are

written on the Volatility Index itself, we need to prove that VIX is more consistent with

SW-EGARCH than it is with GARCH. We obtain VIX daily data from the internet

site of the Chicago Board Options Exchange. Our data is from the period January 2,

1986 to December 6, 2002. We estimate two models. The first one is the analog to a

GARCH process:
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V IXt = α+ δ1V IXt−1 + εt. (7.1)

The second model we estimate is the analog to a SW-EGARCH:

ln(V IXt) = α+ δ1V IXt−1 + γ1|
rεt−1√
V IXt−1

|+ γ2
rεt−1√
V IXt−1

+ εt. (7.2)

where V IXt is the Volatility Index, and rεt−1 is the residual from Rt = µ+ rεt−1 .

This residual term introduces asymmetry in the model analogously to SW-EGARCH,

by allowing the sign (and magnitude) of the return on the S&P 100 to affect the Volatility

Index. Also, note that the second model is a regime switching model.

The models are estimated using a normal likelihood for the error terms. The δ1

coefficient in the model analog to GARCH is estimated to be 0.95. As expected, this

indicates that the Volatility Index is highly persistent. The coefficient estimates for the

second model are qualitatively similar to the SW-EGARCH model, and are available

upon request from the authors. The key here is to figure out which model fits the data

best. Since the two models are not nested, we use the penalized Akaiki Information

Criterion and the Baysian Information Criterion. The AIC is 20079 for the GARCH

analog and 13395 for the SW-EGARCH analog, respectively. As can be seen, the AIC

for the SW-EGARCH analog is much smaller than that of the GARCH analog. This

indicates that the SW-EGARCH representation is a much better fit to the VIX data than

the GARCH representation. The BIC is 20098 for the GARCH analog and 13471 for

the SW-EGARCH analog, respectively. This confirms the AIC results. To conclude, we

are now comfortable that our results related to the conditional volatility carry through

to the observed Volatility Index.
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8. Conclusion

In this paper, it is shown that volatility index option pricing models that do not take into

account the regime switching and asymmetry properties of volatility, undervalue a 3-

month option by about 10%. Such a model was proposed in Grunbichler and Longstaff

(1996). Their model is based on modeling volatility as a GARCH process. For that

reason, their model does not take into account the asymmetric relation between volatility

and returns. More importantly, their model does not account for the fact that volatility

might be subject to different regimes. Switching Regime Asymmetric GARCH is used

to model the generating process of security returns. The model specifies the conditional

variance of security returns as following two regimes possessing different characteristics

(tranquil regime and volatile regime). The comparison between the switching regime

models and the traditional uni-regime models among GARCH, EGARCH, and GJR-

GARCH demonstrates that the SW-EGARCH model fits the data best. Next, the

values of European call options written on a volatility index are computed using Monte

Carlo integration. Option values based on the SW-EGARCH model are compared with

those based on the traditional GARCH specification. It is found that the option values

obtained from the different processes are very different. This clearly shows that the G-L

model is too stylized to be used in pricing derivatives on volatility indices. Therefore,

uni-regime models for volatility should be used with caution because they are based on

the assumption of parametric homogeneity and do not allow regime switching. There is

an urgent need for research to develop volatility derivatives pricing models that account

for volatility asymmetry and volatility regime switching. This will need to be done

before derivatives on volatility indices are introduced by the major futures and options

exchanges of the world. Finally, we propose three promising avenues for future research.

An alternative approach to address the persistence in volatility (or spurious persistence)

issue is that of Bollerslev and Mikkelsen (1996) and Baillie, Bollerslev, and Mikkelsen
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(1996). They propose and use a Fractionally Integrated GARCH, which implies a slow

hyperbolic rate of decay for the influence of lagged squared innovations. It might be

worthwhile to explore volatility option pricing using the FIGARCH model. This study

has focused on call options. It might be a worthwhile extension to check that the results

still hold with put options.
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Table I. Summary Statistics

Variable SP100
number of observations 4861
number of observations=0 52
number of observations>0 2530
mean 0.00051
t-statistic: mean=0 3.327∗∗

standard deviation 0.01066
skewness -2.397∗∗

excess kurtosis 55.265∗∗

Q(20) 11.208
Q2(20) 350.29∗∗

rho(1) -0.013
rho2(1) 0.159∗∗

"Q(20)" is the Ljung-Box statistic of residuals, which follows a χ2(20) distribution.

"Q2(20)" is the Ljung-Box statistic of squared residuals.

"rho(1)" is the first order autocorrelation of residuals.

"rho2(1)" is the first order autocorrelation of squared residuals.

** statistically significant at the 5% level.

34



Table II. Model Selection Tests

Panel A: Likelihood Ratio Tests
Null Alternative SP100
GARCH (4) GJR-GARCH (5) 51.84∗∗

GARCH (4) SW-GARCH (9) 373.84∗∗

GARCH (4) SW-GJR-GARCH (11) 288.12∗∗

GJR-GARCH (5) SW-GJR-GARCH (11) 236.28∗∗

EGARCH (5) SW-EGARCH (11) 345.94∗∗

SWITCH VAR (5) SW-GARCH (9) 376.90∗∗

SWITCH VAR (5) SW-GJR-GARCH (11) 291.18∗∗

SWITCH VAR (5) SW-EGARCH (11) 422.34∗∗

Panel B: Maximum Penalized Likelihood Tests (AIC & BIC)
SP100

AIC BIC
GARCH -31603.90 -31577.94
GJR-GARCH -31653.74 -31621.29
EGARCH -31675.23 -31642.79
SW-GARCH -31967.74 -31909.34
SW-GJR-GARCH -31878.02 -31806.64
SW-EGARCH -32009.20A -31937.80B

SWITCH VAR -31598.84 -31566.40

The number in parenthesis is the number of parameters in the corresponding model.

The Likelihood Ratio tests follow a χ2(KA −KN) distribution, where KN and KA

are the number of parameters corresponding to the Null and Alternative respectively.

AIC = -2ln(L) + 2K; BIC = -2ln(L) + Kln(N); Where ln(L), K, and N are the

maximized log-likelihood, number of parameters, and number of observations, respec-

tively.

** statistically significant at the 5% level.

A model preferred by the AIC.

B model preferred by the BIC.
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Table III. Parameter Estimates of SW-EGARCH

Variable SP100
Regime 1 Regime 2

α -0.1267∗∗ -0.3376
(0.0203) (0.7453)

δ1 0.9928∗∗ 0.9676∗∗

(0.0018) (0.0785)
γ1 0.0695∗∗ 0.2670

(0.0126) (0.3753)
γ2 -0.0197∗∗ -0.3113

(0.0100) (0.2070)
µ 0.0005∗∗

(0.0001)
π11 0.9675∗∗

(0.0393)
π22 0.2675

(0.2513)

log -likelihood 16015.585
Q(20) 20.916
Q2(20) 7.953
rho(1) 0.0138
rho2(1) -0.0133
skewness -0.4158∗∗

excess kurtosis 3.6155∗∗

The EGARCH(1,1) specification is defined as follows

ln(ht) = α+ δ1ht−1 + γ1|zt−1|+ γ2zt−1.

where ht is the conditional variance, zt i.i.d.∼ N(0, 1), and α, δ1, γ1, and γ2 are

constant parameters.

The numbers in parenthesis are standard errors.

"Q(20)" is the Ljung-Box statistic of residuals, which follows a χ2(20) distribution.

"Q2(20)" is the Ljung-Box statistic of squared residuals.

"rho(1)" is the first order autocorrelation of residuals.

"rho2(1)" is the first order autocorrelation of squared residuals.

** statistically significant at the 5% level.
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Figure 1. SW-EGARCH Option Values for Different Exercise Prices and Time to Maturity

 
 
 
This figure is a 3-Dimentional graph depicting call option values from the SW-EGARCH for different time to maturity (1 month to 12 
months) and different exercise prices (5 to 30). The volatility index value is fixed at 15. 
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Figure 2. Difference between SW-EGARCH and GARCH Based Option Values for Different Exercise Prices 
and Time to Maturity

 
 
 
This figure is a 3-Dimentional graph presenting the difference in call option values between those based on the SW-EGARCH and 
those based on the GARCH processes for different time to maturity (1 month to 12 months) and different exercise prices (5 to 30). The 
volatility index value is fixed at 15. 



 

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
1

6

11

0

5

10

15

20

Call option value

Volatility index values

Time to 
maturity 

(in 
months)

Figure 3. SW-EGARCH Option Values for Different Volatility Index Values and Time to Maturity

 
 
 
This figure is a 3-Dimentional graph depicting call option values from the SW-EGARCH for different time to maturity (1 month to 12 
months) and different volatility index values (5 to 40). The exercise price is fixed at 15. 
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Figure 4. Difference between SW-EGARCH and GARCH Based Option Values for Different Volatility Index 
Values and Time to Maturity

 
 
 
 
This figure is a 3-Dimentional graph presenting the difference in call option values between those based on the SW-EGARCH and 
those based on the GARCH processes for different time to maturity (1 month to 12 months) and different volatility index values (5 to 
40). The exercise price is fixed at 15. 
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Figure 5. SW-EGARCH Option Values for Different Volatility Index Values and Exercise Prices 

 
 
 
 
 
This figure is a 3-Dimentional graph depicting call option values from the SW-EGARCH for different exercise prices (5 to 30) and 
different volatility index values (5 to 40). Time to maturity is fixed at 3 months. 
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Figure 6. Difference between SW-EGARCH and GARCH Based Option Values for Different Volatility Index 
Values and Exercise Prices

 
 
 
This figure is a 3-Dimentional graph presenting the difference in call option values between those based on the SW-EGARCH and 
those based on the GARCH processes for different exercise prices (5 to 30) and different volatility index values (5 to 40). Time to 
maturity is fixed at 3 months. 



Figure 7. Percent Mispricing (Undervaluation) in Option Values from using a GARCH Process Instead of a SW-
EGARCH 
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The curves in this figure plot the percentage difference (mispricing or undervaluation in this case) for different time to maturity. The 
difference in the call option value between the two processes is computed as a percent of the option values under the SW-EGARCH. 
The percentage difference described above is computed for different maturities (1 to 12 months) by taking the average/median over all 
exercise prices (5 to 30) and all volatility index values (5 to 40) within that maturity. 



Figure 8. Percent Undervaluation in Option Values from Different Processes as Compared to SW-
EGARCH  
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The curves in this figure plot the percentage difference (undervaluation) for different time to maturity. The difference in the call 
option value between the process in question and the SW-EGARCH is computed as a percent of the option values under the SW-
EGARCH. The percentage difference described above is computed for different maturities (1 to 12 months) by taking the average over 
all exercise prices (5 to 30) and all volatility index values (5 to 40) within that maturity. “SV” stands for the Switching Variance 
model. 



 

Figure 9. Percent Undervaluation in Option Values from using a GARCH Process Instead of a SW-
EGARCH (Accounting for Volatility Risk Premium)  
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 The curves in this figure plot the percentage difference (undervaluation) for different time to maturity. The difference in the call 
option value between the two processes is computed as a percent of the option values under the SW-EGARCH. The percentage 
difference described above is computed for different maturities (1 to 12 months) by taking the average/median over all exercise prices 
(5 to 30) and all volatility index values (5 to 40) within that maturity. The discount factor is defined to be the risk-free rate plus a risk 
premium factor. The risk premium factor is a linear function of the level of volatility (ζV). ζ is chosen to be equal to 0.25 


