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An Incentive Compatible Self-Compliant Pollution Policy under Asymmetric Information 
on Both Risk Attitudes and Technology 

 

 

Abstract 

This paper develops an incentive compatible policy to control agricultural pollution, where the 

government knows the ranges of technology types and risk attitudes but not their distributions 

across farmers. The policy creates incentives for farmers to participate in the program, but 

includes constraints to ensure both self-selection of the appropriate policy, and self-compliance 

with the policy selected. Unknown risk attitudes are accommodated through stochastic efficiency 

rules. The model is applied empirically to estimate policies to limit nitrate contamination from 

New York agriculture. The estimated cost of such a program is not large compared to past 

commodity policies. Payments could be reduced if soils information is used to assign policies. 

Self-compliance is possible and does not impose a large cost on the government.  If the policy 

were designed under risk neutrality, payments would be substantially below the incentive needed 

for participation by a risk averse farmer. 

 



An Incentive Compatible Self-Compliant Pollution Policy under Asymmetric 
Information on Both Risk Attitudes and Technology 

 
Regulating nonpoint source pollution remains one of the most difficult challenges in 

agricultural environmental policy. At the most basic level, many of the policy difficulties stem 

from information and actions that are known to polluters but hidden from regulators. Agricultural 

pollution is unobservable at its source and depends on production practices as well as spatially 

heterogeneous topographic and climatic factors. Farmers choose different practices and respond 

to policies differently because of diversity in production technology and risk preferences.  

At one extreme, the government could regulate nonpoint source pollution through farm-

specific policies, which would require the use of all polluting inputs to be approved and enforced 

by government officials. Given the advances in geo-spatial technologies, etc., such an approach 

may be technically feasible, but the costs of information and monitoring are not well understood.  

Such an approach is certainly not consistent with the voluntary nature of past farm policies 

(Chambers), and is probably too intrusive to be politically feasible. 

Accordingly, there have been recent investigations into decentralized policy schemes that 

achieve environmental objectives through carefully designed incentives. Wu and Babcock (1995; 

1996) designed a policy where the government is aware of various types of farm technologies 

but does not match them to individual farmers. The program allows farmers to choose one of 

several combinations of an abatement level and a government payment. The payments are set to 

induce each farmer to choose the abatement level designed for his type. Peterson and Boisvert 

(2001a) empirically estimated the payments required for such a policy to reduce nitrate losses 

from corn production in New York.  

Although promising, these proposals only address the problem of hidden information on 

technology types. This is but one type of hidden information relevant for policy design. Most 
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agricultural production is uncertain, leading to a complex relationship between price changes and 

input decisions that depend on risk preferences.  Leathers and Quiggin, and more recently, Isik 

caution that without specific knowledge of the distribution of risk attitudes, and the risk 

increasing or decreasing nature of inputs, the effects of environmental policy on input use and 

environmental quality may be ambiguous. Since the distribution of risk preferences across 

farmers is difficult to estimate, a decentralized policy would ideally treat risk preferences as an 

additional piece of hidden information. 

Another major obstacle is that polluting input use usually constitutes a hidden action. 

Even if farmers agree to limit an input such as chemicals, the actual application rates are difficult 

to observe and could at best be monitored imperfectly at high cost. For decentralized policies to 

be practical in these situations, they would have to give farmers an incentive to self-comply. 

This paper develops an incentive compatible policy that regards both technology type and 

risk attitudes as hidden information. The government knows the ranges of these attributes but 

does not know their distribution across farmers. Both production and pollution are stochastic and 

differ by technology type. As in previous models, incentive compatibility is achieved through 

constraints to ensure that farmers will participate in the program and that each type farmer will 

self-select the appropriate policy. In addition, we extend these models by adding a constraint to 

ensure that all participants will self-comply with the policy selected.   

If risk preferences are hidden information, the analytical difficulty is that the policy 

constraints cannot be evaluated. Another unique feature of our policy model is that unknown risk 

attitudes are accommodated through stochastic efficiency rules on the distribution of net returns. 

The model can be numerically simulated under a broad range of conditions, and we also derive 

an empirically testable necessary condition for self-selection to be possible. Further, we 
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demonstrate that in certain cases the computational burden of the simulations can be dramatically 

lowered, and that in these cases the necessary condition for self-selection to be possible is also 

sufficient. In all cases, the stochastic efficiency approach leads to a policy problem that can 

ultimately be solved with linear programming methods. 

 Although the model is applicable to any voluntary environmental program, we 

demonstrate it empirically for the case of nitrate leaching and runoff in New York. In the 

simulated program, corn producers would receive a government payment in exchange for 

reducing nitrogen fertilizer, and different soil types represent distinct technologies. Besides 

illustrating the proposed methods, we also estimate the portion of program payments that 

constitute information rents on soil types. Since these rents could be eliminated if soils 

information were used to assign policies, they represent the value of information to the 

government. Finally, self-compliance does not impose a large cost on the government, but if the 

policy were designed under risk neutrality, the payments would be substantially below the 

incentive needed for participation by a risk averse farmer. 

Theoretical Framework 

Following Leathers and Quiggin, and Isik, we consider a farmer who must choose an 

input that affects both output and environmental quality in a random setting. As described more 

fully below, public environmental objectives can be achieved by creating a policy that pays the 

farmer s – ty per acre, where s is a fixed acreage payment, –t represents a marginal output 

payment, and y is output per acre. The policy is conditioned on output, which is both observable 

and measurable in practice, and it smoothes farm income through payments that are negatively 

related to output. Profit per acre from production for the ith technology type (i ∈ Θ) is: 

 πi(x, bi, t) ≡ (py – t)yi(x, bi) – pbbi – k,  (1) 
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where py is the price of output, yi(⋅) is the technology-specific production function, x represents a 

random input beyond the farmer’s control, bi is the controllable input with price pb, and k is fixed 

cost.  Net income per acre is mi = πi(x, bi, t) + s.  Emissions of pollution ei are jointly produced 

with output, so that ei = gi(x, bi, yi). For common cases of agricultural pollution such as runoff, 

soil and topographic conditions define the technologies in the set Θ, x may be uncertain weather 

or pest outcomes, and bi could be the use of a polluting input such as fertilizer or a binary 

variable representing some production practice. Let the support of x be the interval [ , ]x x , and 

assume that x and bi are defined such that 0π ≥i
x  and / 0i i i

i b y bde db g g y= + ≥  for all i. 

Farmers are assumed to maximize the expected utility of profit per acre.  A farmer with a 

von Neumann-Morgenstern utility function u and technology of type i will select bi by solving 

the problem: 
0

max ( ( , , ) )
≥

π +
i

i
ib

Eu x b t s , where E is the expectation with respect to x.  Assume the 

function u belongs to a known set Ω of continuous real-valued functions.  Let the solution to the 

farmer’s problem be denoted bi(t, s), and let the maximized value of the objective function be 

denoted Eu(πi(t, s)) ≡ Eu(πi(x, bi(t, s), t) + s).  If emissions are a negative externality, the input 

level without any policy bi(0, 0) (and consequently ei) exceeds the socially optimal level; 

suppose the government wishes to implement * (0,0)i ib b≤  as input target on technology i.1  

To implement a different input target on each technology through self-selection, the 

government must in effect devise a policy “menu,” where each item on the menu is a regulation 

on b with a corresponding compensation payment. Such a scheme can be viewed as a two-staged 

game of imperfect information, where the government chooses a set of policies in the first stage, 

and farmers select from these policies in the second stage (Smith and Tomasi).2 The government 

must solve this game by backward induction; it must determine how a farmer with each 



 5

technology would respond to various combinations of payments and regulations, and then 

incorporate these responses in devising policies of the form (ti, si). The goal is farmers of type i 

to choose the policy (ti, si) but those of type j to select (tj, sj). 

If the type of all producers is unknown and all producers are expected to self-comply, 

then the government’s problem is to set policies subject to following three sets of constraints: 

 bi(ti, si) ≤ bi
* for all i ∈ Θ, u ∈ Ω  (2) 

 Eu(πi(ti, si)) ≥ Eu(πi(0, 0)) for all i ∈ Θ, u ∈ Ω (3) 

 Eu(πi(ti, si)) ≥ Eu(πi(tj , sj)) for all i, j∈ Θ, u ∈ Ω (4) 

Constraints in (2) guarantee self-compliance. Policies must be set so that privately optimal input 

use is no larger than the socially desirable level. The participation constraints in (3) require that 

post-policy expected utility is at least as large as pre-policy expected utility. The self-selection 

constraints in (4) guarantee that expected utility for type i’s own policy exceeds the expected 

utility for all other policies. Maximization with respect to bi is embedded in (3) and (4); the left-

hand-sides of both inequalities correspond to an input level of bi(ti, si), while the right hand-sides 

correspond to input levels of bi(0, 0) and bi(tj, sj), respectively.  

 This combination of constraints assumes both hidden information (adverse selection) and 

hidden action (moral hazard), and relaxing either assumption leads to a special case of the 

problem where one set of constraints can be ignored. If the government can assign individual 

farmers to a technology type, then the self-selection conditions can be ignored, and problem is 

one of ensuring that farmers of each type will participate as well as self-comply. On the other 

hand, if farmers’ actions can be easily monitored (e.g., if b represents the use of a discrete 

technology such as a certain irrigation system), then the self-compliance constraints can be 
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ignored. We show below that the policy need not include an output tax in this case, and the 

problem is to find fixed payments that ensure participation and self-selection. 

Stochastic Efficiency Representation 

In the formulation above, each set of conditions must be met for every utility function in 

Ω.  If all farmers have identical risk preferences, Ω has a single element and the problem is one 

of finding separate policies based on technology alone.  If Ω contains many elements then a 

feasible policy could only be found by evaluating the constraint for each utility function, an 

infinite number of computations in the plausible case where each element of Ω is a point on the 

continuum of absolute risk aversion coefficients.  The only way to avoid such an enumeration is 

through general criteria that can identify the situations where (ti, si) is the preferred policy for all 

relevant utility functions.   

Stochastic efficiency criteria provide exactly the simplification required.  For several 

specifications of Ω, the statement that Eu(m) ≥ Eu(m′) for all u ∈ Ω can be equivalently 

expressed by a single stochastic efficiency condition on the distributions of m and m′.  A 

particularly useful such rule is that of second-degree stochastic dominance (SSD).  A cumulative 

distribution G(m) dominates H(m′) by SSD if and only if the area under G is nowhere more than 

that of H and somewhere less than the area under H: 

 ( ) ( )
m m

G m dm H m dm
−∞ −∞

′ ′≤∫ ∫
% %

 (5) 

for all m% , with strict inequality somewhere. Geometrically, this condition means two things: 

first, G must start at or to the right of H (i.e., the first non-zero point on G must be at least as 

large as the first nonzero point on H), and second, the whole distribution G must lie further to the 

right, in the sense that the accumulated area underneath it must be smaller. Hadar and Russel 
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discovered that dominance by SSD is equivalent to greater expected utility for all utility 

functions that are increasing and concave; the SSD rule separates attractive alternatives from 

unattractive ones for all risk-averse decision-makers who prefer more to less.3 

Here, the cumulative distribution function (cdf) of income for type i farmers is: 

 Fi(m; b, t, s) ≡ Pr{ πi(x, b, t) + s ≤ m } (6) 

This definition says there is a distribution Fi conditional on each combination of b, t, and s. One 

consequence of unknown risk preferences is that the optimal input level is not unique. In an SSD 

setting, the candidates for an optimal input level are those than generate second-degree stochastic 

efficient (SSE) income distributions. All distributions not in this set are dominated by at least one 

of the distributions in it, but none of the members of the set is dominated by another member. 

Given a policy (t, s), the acreage payment s creates an identical parallel shift of the cdf for all 

input levels, and does not influence the set of SSE input levels. Group i’s SSE set can therefore 

be written as a correspondence that depends on the output payment: Bi(t) ⊂ ℜ+.  

To illustrate the use of SSD in the policy scheme, consider two groups (i.e., Θ = {1, 2}). 

The government must choose policies (t1, s1) and (t2, s2) to implement the input targets b1
* and 

b2
*. The constraints (2) - (4), written in terms of SSD, require the policies to satisfy:  

 * ( ), 1, 2i i i i ib b b B t i≤ ∀ ∈ =  (7) 

 0 0( ; , , ) ( ; ,0,0) ( ), (0), 1,2i i i i i i i i i i iF m b t s F m b b B t b B i∀ ∈ ∀ ∈ =f  (8) 

 2 2
1 1 1 1 1 1 2 2 1 1 1 1 1 2( ; , , ) ( ; , , ) ( ), ( )F m b t s F m b t s b B t b B t∀ ∈ ∀ ∈f  (9) 

 1 1
2 2 2 2 2 2 1 1 2 2 2 2 2 1( ; , , ) ( ; , , ) ( ), ( )F m b t s F m b t s b B t b B t∀ ∈ ∀ ∈f  (10) 

where “f ” denotes dominance by SSD.  Equation (7) represents self-compliance constraints.  

The government must set an output payment ti so that the SSE set of input levels lies entirely 

below bi
*. The constraints in (8) are the participation conditions— the post-policy distributions 
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(those for input levels in Bi(ti)) must dominate all pre-policy distributions (for input levels in 

Bi(0)).  The constraints in (9) and (10) are the self-selection conditions. For farmers in group 1, s1 

and s2 must be set so that all distributions under their “own” policy (the input levels in B1(t1)) 

dominate the distributions under the other policy (input levels in B1(t2)); a parallel interpretation 

applies to the constraint for group 2. If all the constraints are met, any risk-averse farmer in 

group i will choose the policy (ti, si) over (tj, sj) or not participating, and will choose an input 

level no larger than bi
*. 

 When written in stochastic efficiency terms, the constraints highlight the two ways that 

unknown levels of risk aversion affects the policy. First, the whole distribution of returns must 

be compared to ensure the desired behavior, and second, each constraint must be evaluated over 

a range of input levels. In essence, each policy payment must include a risk premium that has 

two ‘layers,’ which will likely exceed a risk premium calculated in the usual way. In general, 

ignoring risk and/or risk aversion will lead to a policy that is not incentive compatible.4 

The SSD conditions also suggest a computational algorithm for finding policies given 

target input levels b1
* and b2

*, estimates of π1(x, b, t) and π2(x, b, t), and knowledge of the 

distribution of x.  The SSD criterion can be implemented numerically by generating discrete 

distributions of F1(⋅) and F2(⋅) based on random draws from the distribution of x (Anderson et 

al.). The steps in the algorithm follow. 

1. Find the pre-policy SSE input sets B1(0) and B2(0), by iteratively making numerical SSD 

comparisons of pairs of input levels. 

2. Find ti sufficiently large so that (7) holds, by repeating the procedure in step 1 for 

successively larger output payments until Bi(ti) lies entirely below bi
*.  

3. Find the restrictions imposed on si by the participation constraints (8). This restriction is 
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depicted in figure 1. Fi(⋅,0,0) represents a pre-policy distribution of income that is associated 

with an input level in Bi(0), and Fi(⋅, ti ,0) is an income distribution for an input level in Bi(ti) 

but with no acreage payment (i.e., under the policy (ti, 0)). An acreage payment of si > 0 will 

shift the distribution to the right in a parallel fashion, as shown by the curve Fi(⋅, ti, si). The 

participation constraint says that si must be large enough so that Fi(⋅, ti, si) dominates Fi(⋅, 0, 

0) by SSD, which implies that area A in the figure must exceed area B. By iterating over the 

input levels in the sets Bi(0) and Bi(ti), the smallest value of si that satisfies (8) can be found 

numerically. Denoting this minimum value Pi, the participation constraints reduce to si ≥ Pi. 

4. Find the restrictions on si imposed by the self-selection constraints (9) and (10). This step 

requires knowledge of the cross-policy input sets B1(t2) and B2(t1), which can be computed 

similar to the procedure in step 2. The restrictions imposed by group 1’s self-selection 

constraint are shown in figure 2. It is useful to begin with the assumption that s1 = s2 = 0.  

The distributions F1(⋅, t1, 0) and F1(⋅, t2, 0) represent incomes for input levels in B1(t1) and 

B1(t2), respectively, with no acreage payments. Assuming that the policy (t2, 0) is preferred 

to (t1, 0), as shown in the figure, s1 must be enlarged to 1s% , so that 1 1 1( , , )F t s⋅ %  dominates F1(⋅, 

t2, 0) by SSD. Let I1 represent the smallest value of 1s%  that satisfies the SSD condition over 

all combinations of input levels in B1(t1) and B1(t2). Thus, if s2 = 0, the self-selection 

constraint is equivalent to s1 ≥ I1. If s2 > 0, the income distribution under group 2’s policy 

shifts to the right by s2 units, as shown by the dashed curve F1(⋅, t2, s2). In this case the SSD 

condition requires s1 to be enlarged by an extra s2 units, implying the constraint s1 ≥ I1 + s2.  

5. Find the acreage payments si that meet the restrictions found in steps 3-4. Step 4 applied to 

group 2 yields the constraint s2 ≥ I2 + s1, where I2 is the minimum payment needed for group 
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2 to prefer (t2, 0) over (t1, 0). Rearranging the self selection constraints, the government’s 

minimum cost acreage payments can be found by solving the following linear program: 

  Minimize a1s1 + a2s2      (11) 

  Subject to: si ≥ Pi,   i = 1, 2     (12) 

    s1 – s2 ≥ I1      (13) 

    s1 – s2 ≤ I2      (14) 

 where ai is the number of acres of land in group i.   

 This problem is depicted graphically in figure 3. The participation constraints in (12) 

require that s1 is on or to the right of the line at P1 and that s2 is on or above the line at P2.  The 

self-selection constraint for group 1 (equation (13)) requires s1 to lie on or to the right of the 45-

degree line starting at I1; self-selection for group 2 (equation (14)) requires s1 to lie to the left of 

the 45 degree line starting at I2.  For the situation depicted in the figure, the feasible region is the 

shaded area and the objective function is minimized at point d.   

 Existence of a solution requires the feasible region to be nonempty, which will be true in 

general if: (i) P1 and P2 are finite, and (ii) I1 ≤ I2.  The first of these conditions holds by 

assumption, while the second depends on the technologies of the two groups.  A necessary 

condition for existence can be derived as follows.  There are two necessary conditions for one 

distribution to dominate another by SSD: neither the mean of the dominant distribution nor its 

lowest observation may be smaller (Anderson et al.).5 For the self-selection constraints in (9) and 

(10), these requirements can be written: Eπi(x, bi, ti) + si ≥ Eπi(x, bi
j, tj) + sj, and πi(x, bi, ti) + si ≥ 

πi(x, bi
j, tj) + sj, where bi ∈ Bi(ti) and bi

j ∈ Bi(tj). Equivalently, si – sj must equal or exceed the 

larger of ∆Eπi = Eπi(x, bi
j, tj) – Eπi(x, bi, ti) and ∆πi = πi(x, bi

j, tj) – πi(x, bi, ti) for all permissible 

bi and bi
j. Formally, si – sj is at least as large as: 
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 { }
( ),
( )

max ( , , ) ( , , ), ( , , ) ( , , )
j

i ji

i i i

i j i i j i
i i j i i i j i i

b B t
b B t

I E x b t E x b t x b t x b t
∈
∈

= π − π π − π%  (15) 

The necessary condition for separate self-selecting policies to exist is that 1 2I I≤% % . Note that it 

requires some measure of group 2’s loss in returns (either in terms of the mean or the lower tail 

of the distribution) to exceed group 1’s loss. That is, one technology is required to be more 

“productive” in a stochastic sense.  This requirement is an instance of the more general “single-

crossing property” encountered in the literature (Mas-Collel et al.).   

The Government’s Policy Alternatives 

 Figure 3 depicts a situation where separate, self-complying, self-selecting policies are 

possible.  This type of program would give farmers the maximum amount of autonomy in 

choosing and responding to policies. In some cases, the government may have the ability to 

monitor compliance and enough information to assign policies, but may still choose to 

decentralize the program to avoid administrative cost and/or for political feasibility.   

 If b is an input that can be easily monitored, then the government can create policies that 

associate fixed payments si directly with the targets bi
*, so that an output payment is not 

necessary. Peterson and Boisvert (2001b) showed that if self-selecting policies exist in this case 

for targets b1
* < b2

*, then payments will be minimized at point d in figure 3, which is the 

intersection of group 2’s participation constraint and group 1’s self-selection constraint. This 

implies that the participation constraint binds for group 2 but is nonbonding for group 1; i.e., 

group 2 will be just as well off with the policy as without it, but group 1 will be strictly better off 

due to an information rent.   

 If the existence conditions for self-selecting payments are not met, then a policy such as 

the one at point d is impossible. Depending on available information, the alternatives are a 

uniform policy for all farms, or else assigned policies that differ by group. If the policies are 
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assigned to each group but are still voluntary, then the self selection constraints can be ignored, 

and the minimum cost payments are the policy at point c, where s1 = P1 and s2 = P2; farmers in 

both groups would be just as well off after the program as before.   

 Even if self-selecting policies are possible, the government can reduce payments by 

assigning them because the information rent can be eliminated (point c is cheaper than point d).  

There is a trade-off between government cost, on the one hand, and the amount of autonomy 

farmers can be given in selecting policies, on the other. 

 Risk attitudes are a second dimension of the government’s information set. Policies based 

on SSD are conservative in the sense that the government is assumed to know nothing about risk 

attitudes other than that farmers are risk averse. While discovering every farmer’s risk attitude is 

unrealistic, several empirical studies have estimated coefficients of absolute risk aversion6 from 

cross-sectional data, and collectively these studies represent a plausible set of utility functions 

that is smaller than the set assumed for SSD. Information on risk attitudes comes in the form of a 

narrower range of risk attitudes, which may lower program costs because the minimum payment 

bounds (Pi and Ii) may be a reduced in some cases. Policies can be computed in this case by 

replacing SSD in the algorithm above with stochastic dominance with respect to a function 

(SDRF), which isolates preferred distributions for all decision makers with risk aversion 

coefficients in a specified range (Meyer; King).7 Doing so for various assumed ranges would 

trace out the relationship between better knowledge of risk attitudes and government cost.  

The Case of Simply Related Variables 

While the SSD formulation is feasible to implement numerically as outlined above, the 

computations can be dramatically simplified under certain conditions. This simplification is due 

to the concept of simply related random variables (Hammond). Two random variables are 
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simply related if their cdf’s cross at most once. Each of the SSD conditions in (8) - (10) 

compares some random variable of the form m = πi(x, b, t) + s to another random variable m′ = 

πi(x, b′, t′) + s′ (e.g., for the participation constraint (8), t = ti, s = si, and t′ = s′ = 0). The 

following result describes a sufficient condition for the cdf’s of these random variables (Fi and 

Fi′, respectively) to intersect only once, for a given combination of (b, t) and (b′, t′):   

RESULT 1: If ( , , ) ( , , )i i
x xx b t x b tπδ π π ′ ′= −  is positive (negative) for all x, then Fi and Fi′ intersect 

at most once, and Fi intersects Fi′ from above (from below) if the distributions do cross. 

Proofs for this and all other results in this section are in the appendix. 

Intuitively, the simply related property follows from the one-to-one correspondence 

between x and income: each realization of income associated with a unique value of x, and larger 

incomes are associated with larger x’s because 0i
xπ > .  If δπ > 0, then a given change in x causes 

a larger change in m than in m′, so that Fi is geometrically ‘flatter’ and can only intersect Fi′ from 

above.  The opposite case is where δπ < 0, so that Fi is ‘steeper’ than Fi′ .  If δπ switches sign 

somewhere in the domain of x, then Fi and Fi′ may intersect more than once.  

Although the condition in Result 1 must be checked empirically and is not guaranteed to 

hold, it is not unlikely. To see this, suppose without loss of generality that t < t′, which implies 

that b > b′ by the usual properties of input demand functions.  In this case, δπ = (py – t) ( , )i
xy x b  – 

(py – t′) ( , )i
xy x b′ .  Since (p – t) > (p – t′), δπ will be positive for all x provided that 0i

xby > . If 

0i
xby <  then the sign of δπ is ambiguous and must be evaluated empirically. Kramer and Pope 

argued that the simply related property holds for many agricultural applications. 

In the case where policies can be monitored so that t = t′ = 0, the simply related condition 

is guaranteed, since δπ is positive (negative) for all x if and only if i
xby  is positive (negative).  
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Peterson and Boisvert (2001b) showed that these two possibilities correspond to b being a risk 

increasing (risk decreasing) input, in the sense that if b > b′ then m is riskier (less risky) than m′ 

based on the definition proposed by Rothschild and Stiglitz. 

The advantage of simply related variables is that the SSD conditions can be very easily 

evaluated, because the two necessary conditions for SSD are also sufficient. Formally: 

RESULT 2:  Suppose m and m′ are simply related, with cdfs Fi and Fi′, respectively.  The 

sufficient conditions for Fi to dominate Fi′ by SSD are: (i) m ≥ m′ and (ii) Em ≥ Em′, where m 

and m′ are the lowest observations with positive probability. 

This result has two useful implications for solving the policy problem in practice: 

RESULT 3:  Suppose that the profits at any two input levels (i.e., πi(x, b, t) and πi(x, b′, t′)) are 

simply related random variables.  Then the SSE set of input levels Bi(t) is a closed interval of 

real numbers bounded by i

b
b( t ) arg max ( x,b,t )= π  and i

b
b( t ) arg max E ( x,b,t )= π . 

RESULT 4: Consider an SSD condition of the form: 

 ( ; , , ) ( ; , , ) ( ), ( )i i i iF m b t s F m b t s b B t b B t′ ′ ′ ′ ′∀ ∈ ∈f .   

If the two cdfs are simply related, then this condition is equivalent to the requirement:  

 

{ }i i i is s max E ( x,b ,t ) E ( x,b,t ), ( x,b ,t ) ( x,b,t )

where : b { b( t ),b( t )}
b { b( t ),b( t )}

′ ′ ′ ′ ′− ≥ − −

′ ′ ′∈

∈

π π π π

 (16) 

Result 3 allows the each of the SSE sets required in steps 1, 2, and 4 in the algorithm above to be 

identified by solving two nonlinear maximization problems. Result 4 allows the restrictions on 

the acreage payments Pi and Ii in steps 3 and 4 to be found by computing a relatively small 

number of expected and lower-tail profits. In particular, let ∆Eπi(b′, b) and ∆πi(b′, b) represent 

the two values inside the max operator in equation (16). These values depends on the input levels 



 15

b and b′, each of which is an upper- or lower-bound of the input sets B(t) and B(t′), respectively 

(Result 3). Since b and b′ each have two possible values, there are four combinations of (b′, b) to 

be examined. Result 4 says that the policy (t, s) will be preferred by SSD over (t′, s′) if s – s′ 

exceeds the larger of ∆Eπi(b′, b) and ∆πi(b′, b) across all four combinations of (b′, b). Once Ii are 

computed from equation (16), Result 4 also implies that the condition I1 ≤ I2 is sufficient as well 

as necessary for self-selection to be possible. 

Empirical Application to Nitrate Loss from New York Corn Production 

The model is applied empirically to the nitrate leaching and runoff problem from corn 

production in New York. Much of New York is predominated by multi-crop dairy farms, with 

about 30% of cropland devoted to corn production annually. Due in part to the use of nitrogen 

fertilizer on corn acreage, nitrate concentrations in some drinking water supplies have risen 

above their natural background levels.  

Two specific soils (indexed by i = 1, 2) are chosen to represent different technologies, 

from Hydrologic groups A and B, respectively.8 Because these soils generate different amounts 

of nitrate residuals ceteris paribus, the limits on fertilizer that meet environmental standards also 

differ. Production and nitrate residuals are both random because they depend on unpredictable 

weather variables. Before presenting the policy simulations and the procedure for finding 

payments in all the cases, the estimated yield functions, the pollution functions, and nitrogen 

standards are described. 

Estimation 

Corn silage yield functions are estimated from data collected at field trials run by the 

Department of Soil, Crop, and Atmospheric Sciences at Cornell University.  The data include 

276 observations of corn silage yield (y), commercial fertilizer, and manure application at several 
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sites in New York over several crop years; 52 of these observations are from group 1 soils and 

224 are from group 2.  To obtain a variable that represents total nitrogen applied (b), manure was 

credited with 3 pounds of nitrogen per ton and combined with the nitrogen in commercial 

fertilizer.  The data were augmented with observations of rainfall in the growing season (x), 

defined as accumulated precipitation from April through September, from weather stations near 

the experimental sites. 

To gain efficiency, the functions were estimated in a pooled regression using a quadratic 

specification. The model was fit by maximum likelihood, with the parameters bounded so that 

the derivative in x is positive to be consistent with the theoretical model.  The results are: 

y = –15.12 + 0.699dm + 25.71di + 0.1001b – 0.00024b2 + 0.000057dib2 + 1.51x  
    (–5.01)   (1.56)        (9.38)       (6.67)        (–6.09)            (2.04)          (10.08) 
 
 –1.37dix – 0.0007bx,      R2 = 0.56, 
  (–9.59)    (–1.40) 

where t-ratios are in parentheses, and dm and di are dummy variables for manure application and 

soil group, respectively (d1 = 0, d2 = 1).  The interaction terms dib2 and dix allow the shape of the 

yield function in nitrogen and rainfall to differ by group.  The estimated coefficients all have 

theoretically expected signs, and the fit also appears adequate.  The estimated coefficients on dib2 

and dix are both statistically different from zero, and their signs imply that group 2 has a higher 

marginal product of nitrogen but a smaller marginal product of rainfall.  If weather is random, 

the negative coefficient on the interaction term bx suggests that nitrogen is a risk-decreasing 

input for both groups, though the parameter was not estimated with great precision (t = –1.40). 

 Evaluating the functions at average rainfall and nitrogen (20.9 in., and 131 lb./acre, 

respectively), a one-pound increase in nitrogen increases yield by 0.023 tons (45 lb.) and 0.038 
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tons (76 lb.) per acre for groups 1 and 2, respectively, while a one-inch increase in rainfall raises 

yield by 1.42 tons and 0.05 tons, respectively. 

 Profits for group i were simulated by equation (1), where the policy variable bi is nitrogen 

from commercial fertilizer.9 The random variable x takes on values from a sample of growing 

season rainfall observations at the Ithaca weather station over the 30-year period 1963-1992. The 

prices py and pb were set at the mean of observed corn silage and nitrogen prices (in constant 

1992 dollars) over the same 30 years, where corn silage prices were imputed as a corn grain 

equivalent. Other costs k were based on enterprise budgets from USDA and Schmit.  

Nitrate emissions are defined as the sum of leaching and runoff per acre of cropland: ei = 

ei
R + ei

L. Boisvert et al. estimated a recursive system that relates nitrate leaching and runoff on 

New York soils to nitrogen application, soil characteristics, and weather variables.  This system 

can be used to simulate nitrate losses as follows: 

 ( , , ), ( , , , )i i i
R R i i L L i i Re e b e e b e= =x c x c  

The vector x contains four weather variables (total annual rainfall, and rainfall within 14 days of 

planting, fertilizer, and harvest); ci is a vector of average soil characteristics for group i (field 

slope, percent organic matter, soil horizon depth, and the erodibility factor K).  See Boisvert et 

al. for details on the translog specification of the model and estimation procedures.   

 Distributions of nitrate emissions or each soil were simulated from the weather 

observations at the Ithaca weather station over the 1963-1992 period. Policy targets for fertilizer 

bi
* were computed using chance constraints (Lichtenberg and Zilberman). In particular, bi

* was 

chosen to satisfy Pr{ei
R + ei

L > e*} ≤ α, where  e* is a target level of total nitrate emissions, and α 

is some small probability. These parameters were set at values of e* = 25 and α = 0.1 in the 



 18

simulations, leading to estimated fertilizer targets of b1
* = 55 and b2

* = 82 pounds per acre for the 

two groups, respectively. 

Policy Simulations 

To study the effects of hidden actions and information, policies were simulated and 

compared under several scenarios that vary along three dimensions. First, hidden actions on 

fertilizer application could be regulated either by conditioning payments on corn production (i.e., 

self-compliance) or through monitoring and penalties for non-compliance. Under self-

compliance, farmers receive a payment of s – ty per acre, where t is chosen to induce a privately 

optimal fertilizer level below bi
*. 

 Under monitoring, farmers are offered an acreage payment s in exchange for fertilizing at 

a specified rate. The monitoring mechanism is not modeled explicitly, but it is assumed to be 

adequate to prevent cheating. For the fertilizer case, this would probably require a permit system 

for fertilizer purchases, along with on-site checks to verify the application rates on specific 

fields. Such a monitoring scheme would undoubtedly be costly to the government.  The purpose 

of comparing the two models is to investigate whether the cost of monitoring may be justified 

through savings in nominal payments. Other practices (e.g., technology adoption) might well be 

monitored at lower cost. 

 The second dimension of the policy simulations involves soils information.  The 

government may choose to use soils information to assign policies by soil type, in which case 

each farmer would only have the option of the policy designed for his soil or not participating.  If 

soils information is not used, then the possibilities are either soil specific, self-selected policies or 

else a uniform policy for all soils. As shown above, self-selection is only possible under certain 

conditions that must be tested.10 
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 The third dimension is the information on risk attitudes. At one extreme, we assume that 

the government knows only that farmers are risk averse to varying degrees, so that policies must 

be computed based on SSD. The other extreme is the assumption that all farmers have identical 

preferences and are risk neutral. These two situations illustrate the change in program costs if 

information on risk attitudes becomes more precise. They also reveal how payments may be set 

inappropriately if the government assumes farmers are risk neutral while in reality at least some 

of them are risk averse.   

 The payments in all models are computed based on the five-step algorithm, using the 

estimated relationships discussed above. Since the estimated yield function yi(x, b) is linear in x, 

the quantity ( , , ) ( , , )i i
x xx b t x b tπ ′ ′δ = π − π  is a constant (either positive or negative) for any 

combination of (b, t) and (b′, t′). Therefore, by Result 2, the profits are simply related random 

variables; by Results 3 and 4, the SSD computations can be simplified to involve only mean and 

lower-tail profits. The computations for the risk neutral model are similar except they involve 

only mean profits.   

 Table 1 reports the fertilizer levels, profits, and production for each of the policies, and 

the payments are in table 2. The upper-left block of numbers in each table represents SSD-based 

policies that are assigned by soil. If these policies are self-complying, farmers in the two groups 

will reduce fertilizer from about 83-92 to 46-55 pounds and from 127-139 to 70-82 pounds, 

respectively (table 1). In so doing, they will receive government payments of $231 – $9.86×y1 

and $251 – $10.68×y2, respectively (table 2). As is required for participation, these payments 

provide mean incomes at least as large as without the policy, while corn silage yields are reduced 

by about 1-2 tons (table 1).  If fertilizer use can be monitored, then the groups receive acreage 

payments of about $6 and $12 per acre, respectively (table 2).  While the self-complying policies 
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may generate larger net payments in individual years, the expected net payments E[si – tiyi] are 

less than the payments under monitoring (table 2). This implies that a self-complying policy is 

preferable in terms of government costs. 

 Payments under risk neutrality are strictly less than those under SSD (table 2).  The 

difference in these payments represents an implicit risk premium, which accounts for up to about 

47% of payments under risk aversion. This result has two implications. First, it suggests that 

government costs could be reduced if more information could be collected on risk attitudes. 

Peterson and Boisvert (2001b) calculated payments with monitoring based on stochastic 

dominance with respect to a function (where risk attitudes were specified as a subset of those 

allowed under SSD) and found that government costs were intermediate between the SSD and 

risk neutral cases. Second, since not all farmers are risk neutral in reality, the risk neutral policies 

will not meet environmental targets. For all risk-averse farmers, non-participation is a dominant 

strategy if the risk-neutral payments are offered.11 

 If the government chooses not to use soils information, self-selecting policies in the self-

compliance model are impossible because the necessary condition for existence is violated.  

Intuitively, self selection cannot occur because group 1’s policy is preferred by both groups 

because group 1’s payment falls less rapidly in output (t1 = 9.86, t2 = 10.68). If s2 is increased 

enough so that group 2 prefers (t2, s2), then group 1 will prefer it as well. The difficulty is that the 

marginal productivities of fertilizer are too similar across groups; sensitivity results with a wider 

gap in marginal productivities are presented below for comparison. 

 The remaining alternative that does not use soils information is a uniform policy, which 

is presented in the bottom halves of tables 1 and 2.  To ensure that environmental targets are met 

for both groups, the uniform policy must be set at the more stringent of the two policies.  In the 
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self-compliance model, this means that both groups share the policy designed for group 2 (a 

payment of $251 – $10.68×yi, see table 2), and group 1 will exceed its fertilizer target of 55 

pounds (b1 ranges from 39 to 48 pounds, table 1). Since group 1 is receiving a higher payment 

than under assigned policies, neglecting to use soils information comes at a cost to the 

government. This “information rent” of $3.68 - $4.24 per acre is about half of the expected 

payments to group 1 (table 2), and represents the public opportunity value of collecting and/or 

using information.  

 Under monitoring, a uniform policy would cost substantially more than assigned policies. 

Since a monitored policy includes the fertilizer level explicitly, both groups would have to 

fertilize at 55 pounds per acre to meet both environmental targets (table 1). An acreage payment 

of $25.24 is then required to compensate either group for this reduction; about $19 and $14 of 

this payment constitutes an information rent to the two groups, respectively (table 2). These 

information rents are also much larger than those under self-compliance, which implies the cost 

of ignoring soils information is higher if farmers’ actions are monitored. 

 As mentioned above, self-selecting policies are not possible because the estimated 

marginal productivities are too similar across groups. At the data means, the difference in 

estimated marginal products of nitrogen is 0.015 tons (30 pounds) per pound of nitrogen, which 

translates to less than 0.1% of mean yield. This estimated differential may have been muted 

because of the specific cross section of soils used in the field trials; previous agronomic evidence 

suggests that light and heavy soils in New York respond to nitrogen quite differently (New York 

State College of Agriculture and Life Sciences).  

To explore the effect of a larger productivity differential, a sensitivity analysis is 

performed on the coefficient for dib2 in the yield equation, which had a point estimate of 
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0.000057. Table 3 presents the results for a coefficient value of 0.0001, which raises the 

difference in marginal products at mean nitrogen to 0.026 tons (52 pounds). In this case, self-

selected policies are possible and are reported in the bottom half of the table. The most 

significant difference between these self-selected policies and the uniform policy in table 2 is 

that self-compliance no longer has a cost advantage over monitoring. The expected net payments 

under self-compliance are in the range of $30 per acre for group 1 and $21 for group 2, which are 

three to four times larger than payments under monitoring. About $26 of the payment to group 1 

is an information rent, compared to a $5 rent under monitoring. Unlike the base case in table 2, 

the cost of ignoring soils information is much smaller if actions are monitored. There appears to 

be a relationship between the implicit values of hidden actions and hidden information, but the 

nature of this interaction is an empirical question that depends on technological parameters. 

Policy Implications 

This paper demonstrates both the theoretical and empirical possibility of successfully 

designing a voluntary environmental program when the government’s information is limited. In 

particular, we identified the structure of policies necessary to ensure incentive compatibility 

where both risk attitudes and technology are unknown. We outlined a computational procedure 

for finding policies that accommodates unknown risk attitudes through stochastic efficiency 

criteria. The final step in this procedure reduces to a simple linear programming problem. We 

also derived an empirically verifiable necessary condition for self-selection to be possible, and 

showed that in certain cases the stochastic efficiency criteria can be simplified to a small number 

of computations involving lower-tail and mean income.  

The model was simulated for a program that would offer government payments to New 

York corn producers in exchange for fertilizer reductions. The results suggest that such a 
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program could achieve self-compliance at a relatively modest cost; payments would actually 

need to be increased if fertilizer levels were to be monitored. The expected net payments are 

below $15 per acre, which is less than typical farm program payments in the past. Self-selection 

would be possible in cases where the marginal productivity of nitrogen differs substantially 

across soils. 

Soils information is valuable to the government, in the sense that payments could be 

reduced if policies were assigned to specific soils. This type of information already exists in 

many states; in New York, for example, the use-value assessment program requires local 

officials to record each farm’s acreage in each of ten soil productivity groups (Thomas and 

Boisvert). Policy makers would need to weigh these cost savings against the political and other 

consequences of conditioning policy eligibility and benefits on a farmer’s resource setting. 

Policies were also simulated for both the risk averse and risk neutral cases. Pannell, 

Malcom, and Kingwell have argued that the insight gained by modeling risk aversion is more 

pronounced for discrete decisions (such as the adoption of new technology) than for decisions 

regarding input use, etc., since in the latter case the results are often very similar to a risk neutral 

model. In the New York application of our policy model, the risk neutral and risk averse results 

for optimal inputs and profits are indeed similar, with expected incomes that often differ by less 

than $1 per acre. However, with respect to the program participation decision, the incentive 

compatibility constraints magnify the effect of risk aversion, leading to an implicit risk premium 

that represents as much as 47% of optimal payments. If payments were designed assuming risk 

neutrality, environmental objectives could well be sacrificed because risk averse farmers would 

be provided insufficient incentive to participate in the program voluntarily. 
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Footnotes

                                                 
1 The method for finding this regulation is not modeled explicitly. In practice, the choice is often 

made through a second-best standards approach, which sets regulations to meet some 

predetermined emissions target (Baumol and Oates).  

2 Imperfect information results because the government may not be able to individual farmers to 

the elements of Θ and Ω, and because the actual use of b may not be observed. In general, this 

game involves the government and all producers, so that any farmer’s choice may depend 

strategically on the choices of all others. If all policy options are available to any farmer 

regardless of others’ choices, and the distributions of technology and risk attitudes are 

independent, this strategic interdependence can be ignored and the policy becomes a large 

number of two-player games between the government and each producer (Xepapadeas).  

3 Formally, if G(m) dominates H(m′) by SSD, then Eu(m) ≥ Eu(m′) for all continuous and twice 

differentiable u(⋅) with u′ > 0 and u″ ≤ 0 (Hadar and Russell, p. 31).  Other stochastic efficiency 

criteria exist for other specifications of the utility set Ω. For example, Meyer has discovered a set 

of criteria, named stochastic dominance with respect to a function, which can order distributions 

when the coefficient of absolute risk aversion lies in a specified range. 

4 To illustrate, consider the participation constraint in equation (8). Given a ti, si must be large 

enough so that the policy (ti, si) dominates (0, 0). If risk neutrality is assumed, participation could 

be secured by a payment of 0( , ,0) ( , ,0)i i
i is E x b E x b= π − π , where b0 and bi are the solutions to 

max Eπi(x, b, 0) and max Eπi(x, b, ti), respectively. But if farmers are risk averse in reality, this 

payment will generally be insufficient because it does not include a risk premium. Based on the 

usual definition, the risk premium required is the value ri such that 
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( ; , , ) ( ; ,0,0)i i i i i i iF m b t s r F m b+ f . However, this risk premium is generally not large enough 

because the SSD condition must hold for all bi ∈ Bi(ti) and b0 ∈ Bi(0). 

5 The two necessary conditions are derived by letting m%  in equation (5) grow arbitrarily large 

and small, respectively. As m%   ∞, SSD implies that Em ≥ Em′. For “small” values of m% , SSD 

requires the lowest observation on Fi to lie at or to the right of the lowest observation on Fi′. 

6 This coefficient is defined as a(m) = –u′′(m)/u′(m), and is positive for risk-averse individuals. 

7 In such simulations, care must be taken to ensure that the risk aversion coefficients from the 

literature are properly calibrated, since they are not invariant to the level of wealth (Grube). 

8 Hydrologic group is a classification of soils based on their capacity to permit infiltration. A 

soils are generally coarser and more vulnerable to leaching than B soils (Thomas and Boisvert). 

9 Total nitrogen is the sum of nitrogen from commercial fertilizer and manure, assuming that 

dairy farmers apply 20 tons of manure per acre to dispose of animal waste. 

10 If self-selection is desired, the government has a commitment problem, in that producers may 

believe policies will be assigned to them once they reveal their type by selecting a policy. This 

problem could be avoided through the use of a multiple-year, binding contract, although the 

government would still know the farmer’s type for future contract periods. We are indebted to a 

reviewer for making this observation.  

11 For our model specification, the risk neutral results are equivalent to those from assuming no 

uncertainty. As a reviewer points out, the quadratic production function implies that the effect of 

rainfall on the marginal product of fertilizer is constant, so that max Eπi(x, b, t) is equivalent to 

max πi(Ex, b, t). Thus, in this case, ignoring risk as the same consequences as ignoring risk 

aversion; both lead to violations of incentive compatibility. 
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Appendix  

Proof of Result 1 

 Suppose that 
ˆ ˆ( ) ( )i i

m
F m F m

m m
′∂ ∂

δ = −
′∂ ∂

 is negative (positive) for all m̂ ; i.e., Fi is everywhere 

flatter (steeper) than Fi′. This implies that if the distributions cross, Fi intersects Fi′ from above 

(below).  We will prove that δm < (>) 0 if and only if δπ > (<) 0.  Let Fx be the cdf of x (i.e., Fx(a) 

≡ Pr{x ≤ a}), and define X(m) and X′(m′) as the inverse functions of m and m′ respectively, such 

that X(πi(x, b, t) + s) = x and X(πi(x, b′, t′) + s′) = x. Applying X(⋅) to both sides of the inequalities 

inside Fi and Fi′, based on the definition in (6): 

Fi(m) = Pr{x ≤ X(m)} = Fx(X(m))      and       Fi′(m′) = Pr{x ≤ X(m′)}= Fx(X′(m′)) 

These relationships imply that at an intersection point m̂ : 

 ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( )) ( ) ( )i i x xF m F m F X m F X m X m X m′ ′ ′= ⇒ = ⇒ =  

Letting X̂  represent the value of ˆ ˆ( ) ( )X m X m′= , δm can be written in terms of Fx as follows:   

 
ˆ ˆ ˆ( ) ( ) ( )x x x

m
F X F X F XX X X X

X m X m X m m
′ ′∂ ∂ ∂∂ ∂ ∂ ∂ δ = − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (17) 

By the inverse function theorem, ∂X/∂m = 1/πi
x(x, b, t) and ∂X′/∂m = 1/πi

x(x, b′, t′). Substituting 

these relationships into (17) and noting that ∂Fx/∂X > 0 by the definition of a cdf, δm < (>) 0 is 

equivalent to: 1/πi
x(x, b, t) < (>) = 1/πi

x(x, b′, t′).  Rearranging, πi
x(x, b, t) > (<) πi

x(x, b′, t′), which 

is the desired result. 

Proof of Result 2 

 SSD requires that ( ) [ ( ) ( )]
m

i iS m F m F m dm
−∞

′= −∫
%

% ≤ 0 for all m% , with strict inequality for 

some m% .  We prove this condition holds if Fi and Fi′ are simply related and hypotheses (i) and 



 29

(ii) are met.  There are three cases to consider: 

Case 1: Fi and Fi′ do not intersect. Under hypotheses (i) and (ii) Result 2, Fi must lie strictly to 

the right of Fi′ in this case.  Thus, Fi(m) < Fi′(m) for all m, and ( ) 0S m <%  for all m% . 

Case 2.  Fi and Fi′ intersect at their lower tails. Here m = m′; since the distributions cannot cross 

a second time, Fi must lie either strictly to the right or left of Fi′ for m > m.  Hypothesis (ii) 

precludes the second possibility, which implies that Fi(m) < Fi′(m) for all m > m.  Thus, 

( ) 0S m =%  for all m m m′≤ =%  and ( ) 0S m <%  for all m m>% . 

Case 3. Fi and Fi′ intersect above their lower tails. In this case ˆ ˆ( ) ( )i iF m F m′=  for some 

ˆ ,m m m′> .  Since m̂  can be the only intersection point, hypothesis (i) implies that m > m′.  Thus, 

Fi must lie strictly to the right of Fi′ up to m̂  (i.e., Fi(m) < Fi(m) ˆm m∀ < ), so that ( ) 0S m <%  for 

all ˆm m≤% .  For ˆm m>% , 
ˆ

ˆ( ) ( ) [ ( ) ( )]
m

i i
m

S m S m F m F m dm′= + −∫
%

% .  The second component is positive 

and monotonically increasing in m%  since Fi lies to the left of Fi′ after the intersection point (i.e., 

Fi(m) > Fi′(m) for m > m̂ ).  However, hypothesis (ii) guarantees that it never becomes large 

enough to exceed ˆ( )S m  in absolute value. To see this, note that Em ≥ Em′ means that 

[ ] 0i im dF dF
∞

−∞

′− ≥∫ , or, integrating by parts, [ ( ) ( )] [ ( ) ( )] 0i i i im F m F m F m F m dm
∞∞

−∞ −∞

′ ′− − − ≥∫ .  

Since Fm(m) = Fm′ (m) = 0 and ( ) ( ) 1m mF m F m′= = , the first term in brackets equals zero.  

Therefore, lim ( ) 0
m

S m
→∞

≤
%

% .   

Proof of Result 3 

We will show that a b below or above both ( )b t  and ( )b t  is dominated by some other input 

level but a b between ( )b t  and ( )b t  is not.  We do not know a priori whether ( )b t  is larger or 
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smaller than ( )b t .  Suppose first that ( ) ( )b t b t< .  To begin, note that strict concavity of 

( , , )i x b tπ  and ( , , )iE x b tπ  in b implies that: (i) ( , , )i x b tπ  is strictly increasing (decreasing) for 

all ( ) ( )b b t< > , and (ii) ( , , )iE x b tπ  is strictly increasing (decreasing) for all ( ) ( )b b t< > .  Thus, 

for any ( )b b t< : 

 ( , , ) ( , ( ), ) and ( , , ) ( , ( ), )i i i ix b t x b t t E x b t E x b t tπ < π π < π  

where the inequalities follow from the definition of ( )b t  and fact (ii), respectively.  Therefore, 

by result 1, ( )b t  dominates b by SSD. Similarly, for any ( )b b t> : 

 ( , , ) ( , ( ), ) and ( , , ) ( , ( ), )i i i ix b t x b t t E x b t E x b t tπ < π π < π  

by fact (i) and the definition of ( )b t , implying that ( )b t  dominates b by SSD.  Finally, consider 

any two input levels b, b′ such that ( ) ( )b t b b b t′≤ < ≤ .  Neither of these input levels can 

dominate the other because: 

 ( , , ) ( , , ) and ( , , ) ( , , )i i i ix b t x b t E x b t E x b t′ ′π < π π > π  

That is, one of the necessary conditions for either b or b′ to dominate is violated.  A parallel set 

of arguments verifies that if ( ) ( )b t b t>  then: ( )b t  dominates all b < ( )b t ; ( )b t  dominates all b 

> ( )b t ; and for any b < b′ in the interval [ ( ), ( )]b t b t , neither input level dominates the other.  

Proof of Result 4 

By Result 3, B(t) is the closed interval of real numbers bounded by ( )b t  and ( )b t .  To begin, we 

must establish that ( )b B t∀ ∈ , ( , , )i x b tπ  is bounded between ( , ( ), )i x b t tπ  and ( , ( ), )i x b t tπ , and 

that ( , , )iE x b tπ  is bounded between ( , ( ), )iE x b t tπ  and ( , ( ), )iE x b t tπ .  By the definition of a 

maximum ( , , )i x b tπ  ≤ ( , ( ), )i x b t tπ  for all b ∈ B(t).  Since B(t) is a closed and bounded interval, 

any b ∈ B(t) can be written ( ) (1 ) ( )b b t b t= α + − α  for some α ∈ [0, 1].  By the concavity of 
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( , , )i x b tπ  in b, ( , , )i x b tπ  ≥ ( , ( ), ) (1 ) ( , ( ), ) ( , ( ), )i i ix b t t x b t t x b t tαπ + − α π ≥ π .  A parallel set of 

arguments verifies that ( , ( ), )iE x b t tπ  ≤ ( , , )iE x b tπ  ≤ ( , ( ), )iE x b t tπ  for all b ∈ B(t).   

 Now suppose group i faces the policy alternatives (t, s) and (t′, s′) and that all of the 

following conditions are met:  

 ( , ( ), ) ( , ( ), ) , ( , ( ), ) ( , ( ), )i i i ix b t t s x b t t s E x b t t s x b t t s′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π +  (18) 

 ( , ( ), ) ( , ( ), ) , ( , ( ), ) ( , ( ), )i i i ix b t t s x b t t s E x b t t s E x b t t s′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π +  (19) 

 ( , ( ), ) ( , ( ), ) , ( , ( ), ) ( , ( ), )i i i ix b t t s x b t t s E x b t t s E x b t t s′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π +  (20) 

 ( , ( ), ) ( , ( ), ) , ( , ( ), ) ( , ( ), )i i i ix b t t s x b t t s E x b t t s E x b t t s′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π +  (21) 

Conditions (18) - (19) and the bounds on ( , , )i x b t′ ′π  and ( , , )iE x b t′ ′π  established above imply 

that: 

 ( , ( ), ) ( , , ) , ( , ( ), ) ( , , ) ( )i i i ix b t t s x b t s E x b t t s E x b t s b B t′ ′ ′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π + ∀ ∈  (22) 

Similarly, (20) - (21) and the bounds on profits imply: 

 ( , ( ), ) ( , , ) , ( , ( ), ) ( , , ) ( )i i i ix b t t s x b t s E x b t t s E x b t s b B t′ ′ ′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π + ∀ ∈  (23) 

Finally, (22) - (23) and the bounds on ( , , )i x b tπ  and ( , , )iE x b tπ  imply that: 

 ( , , ) ( , , ) , ( , , ) ( , , ) ( ), ( )i i i ix b t s x b t s E x b t s E x b t s b B t b B t′ ′ ′ ′ ′ ′ ′ ′π + ≥ π + π + ≥ π + ∀ ∈ ∀ ∈  (24) 

By Result 2, (24) is sufficient to guarantee that: 

 ( ; , , ) ( ; , , )i iF m b t s F m b t s′ ′ ′f  ∀b ∈ B(t), ∀b′ ∈ B(t′) (25) 

An equivalent way of expressing the conditions in (18) - (21) is that:  

 

( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )
( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )

max
( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )
( , ( ), ) ( , ( )

i i i i

i i i i

i i i i

i i

x b t t x b t t E x b t t E x b t t
x b t t x b t t E x b t t E x b t t

s s
x b t t x b t t E x b t t E x b t t
x b t t x b t

′ ′ ′ ′π − π π − π
′ ′ ′ ′π − π π − π

′− ≥
′ ′ ′ ′π − π π − π
′ ′π − π , ) ( , ( ), ) ( , ( ), )i it E x b t t E x b t t

 
 
 
 
 

′ ′π − π  

 (26) 

That is, (26) implies (25), which is the desired result.   
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Figure 1. Geometry of the Participation Constraint 

Figure 2. Geometry of the Self-Selection Constraint 
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 Figure 3. Geometry of the Policy Design Problem 
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Table 1. Pre- and Post-Policy Fertilizer, Income, and Production, Various Policy Scenarios 

 Risk Aversion (SSD)  Risk Neutrality 

  Self-    Self-  
Item Pre-Policy Compliance Monitoring   Pre-Policy Compliance Monitoring 

Assigned Policies by Soil        

  Fertlizer, group 1 (lb/acre) 83-92 46-55 55  83 55 55 

  Mean income, group 1 ($/acre) 225-226 226 229  226 226 226 

  Mean yield, group 1 (tons/acre) 23.7-23.9 22.8-23.0 23.0  23.7 23.0 23 

  Fertlizer, group 2 (lb/acre) 127-139 70-82 82  127 82 82 

  Mean income, group 2 ($/acre) 212-213 215 217  213 213 213 

  Mean yield, group 2 (tons/acre) 23.8-24.0 22.2-22.7 22.7  23.8 22.7 22.7 

Uniform Policy         

  Fertlizer, group 1 (lb/acre) 83-92 39-48 55  83 48 55 

  Mean income, group 1 ($/acre) 225-226 228 248  226 226 241 

  Mean yield, group 1 (tons/acre) 23.7-23.9 22.5-22.8 23.0  23.7 22.8 23 

  Fertlizer, group 2 (lb/acre) 127-139 70-82 55  127 82 55 

  Mean income, group 2 ($/acre) 212-213 215 219  213 213 213 

  Mean yield, group 2 (tons/acre) 23.8-24.0 22.2-22.7 21.6  23.8 22.7 21.6 
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Table 2.  Mean Optimal Payments and Information Premiums      

 Risk Aversion (SSD)  Risk Neutrality 

 Self-  Self-  
Item Compliance Monitoring  Compliance Monitoring

Assigned Policies by Soil      

  Output payment, group 1 ($/ton) -9.86 0.00  -8.49 0.00 

  Acreage payment, group 1 ($/acre) 230.81 6.33  199.24 3.60 

  Expected net payment, group 1 ($/acre) 3.61-6.53 6.33  3.61 3.60 

  Output payment, group 2 ($/ton) -10.68 0.00  -9.54 0.00 

  Acreage payment, group 2 ($/acre) 251.06 11.62  223.43 7.29 

  Expected net payment, group 2 ($/acre) 9.13-13.69 11.62  7.30 7.29 

Uniform Policy      

  Output payment ($/ton) -10.68 0.00  -9.54 0.00 

  Acreage payment ($/acre) 251.06 25.24  223.43 18.63 

  Expected net payment, group 1 ($/acre) 7.29-10.77 25.24  5.66 18.63 

  Soils information rent, group 1 ($/acre) 3.68-4.24 18.91  2.05 15.03 

  Expected net payment, group 2 ($/acre) 9.13-13.69 25.24  7.30 18.63 

  Soils information rent, group 2 ($/acre) 0.00 13.62  0.00 11.34 
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Table 3.  Mean Optimal Payments and Information Premiums, Self-selecting Policies 

 Risk Aversion (SSD) Risk Neutrality 

 Self-  Self-  
Item Compliance Monitoring  Compliance Monitoring 

Assigned Policies by Soil     

  Output payment, group 1 ($/ton) -9.86 0.00 -8.49 0.00 

  Acreage payment, group 1($/acre) 230.81 6.33 199.24 3.60 

  Expected net payment, group 1 ($/acre) 3.61-6.53 6.33 3.61 3.60 

  Output payment, group 2 ($/ton) -9.00 0.00 -8.08 0.00 

  Acreage payment, group 2 ($/acre) 237.01 5.15 213.31 5.15 

  Expected net payment, group 2($/acre) 20.82-22.01 5.15 19.25 5.15 

Self-Selected Policies     

  Output payment, group 1 ($/ton) -9.86 0.00 -8.49 0.00 

  Acreage payment, group 1($/acre) 256.85 11.48 222.77 8.75 

  Expected net payment, group 1 ($/acre) 29.65-32.58 11.48 27.14 8.75 

  Soils information rent, group 1 ($/acre) 26.04 5.15 23.53 0.00 

  Output payment, group 2 ($/ton) -9.00 0.00 -8.08 0.00 

  Acreage payment, group 2 ($/acre) 237.01 5.15 213.31 5.15 

  Expected net payment, group 2 ($/acre) 20.82-22.01 5.15 19.25 5.15 

  Soils information rent, group 2 ($/acre) 0.00 0.00 0.00 0.00 
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