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Commodity Price Behavior: A Rational Expectations Storage Model of Corn

Commodity price behavior is complex, making its modeling a daunting task.  A typical

price series is highly variable and autocorrelated.  Commodity prices often have seasonal and

cyclical components.  Net of seasonality and cycles, these prices may be mean-reverting to some

long-run average, associated with trends in the macro-economy, population growth, and

technological changes.  Occasional spikes are observed when prices jump abruptly and

temporarily to a high level relative to its long-run average.  Thus, distributions of prices are

skewed to the right and often display kurtosis (e.g., Myers; Deaton and Laroque, 1992).  Price

changes are nonlinearly dependent—higher moments are correlated (e.g., Yang and Brorsen).

Many models have been developed to depict the systematic behavior of prices, but few

have done so adequately (Tomek and Myers; Brorsen and Irwin).  Both time-series and structural

models require ad hoc assumptions to accommodate all time-series features of commodity prices.

Standard models of financial assets do not account for seasonality (or cycles) in agricultural

markets or for differences in the market characteristics among commodities.  Moreover, little

attention has been paid to the fundamental relationship between model parameters and

parameters of the underlying probability distributions of prices.

A commodity model can be useful if it provides estimates of how prices are distributed

on a given future date, perhaps conditional on known market variables.  For effective intra-year

marketing decisions, for example, conditional probability distributions of prices need to be

available at least monthly.  A major impediment to estimating the parameters of these

distributions is that these markets undergo frequent structural changes, such as changes in

government policy, and the number of observations generated by a constant structure is limited.
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The objectives of this paper are to develop a structural model, which can simulate

monthly prices, and to determine the relationship between the model’s parameters and the

parameters of probability distributions of prices.  Our point of departure is the nonlinear rational

expectations commodity storage model.  This model emphasizes nonlinearity in storage—that

aggregate storage cannot be negative (Gustafson)—and Muth’s rational expectations hypothesis.

Williams and Wright synthesize the “modern” theory of competitive storage, which appends

supply, demand, and market clearing conditions to the intertemporal arbitrage equation of the

classic model.

The resulting framework has simulated some of the time-series features of spot prices

(e.g., Deaton and Laroque, 1992, 1996; Chambers and Bailey; Rui and Miranda; Routledge,

Seppi, and Spatt).  Deaton and Laroque (1992), for example, replicate the degree of skewness

and kurtosis in observed price distributions, but fail to account for the degree of autocorrelation.1

Such studies, however, typically apply a “generic” model to multiple commodities, and ignore

commodity-specific characteristics such as the distinction between annual crops with storage and

continuously produced, perishable commodities.  Moreover, applications of the rational

expectations storage framework to commodity-specific markets have focused on simulating

policy scenarios (Miranda and Glauber; Miranda and Helmberger; Gardner and López; Lence

and Hayes).  Also, most research develops annual models, although a few quarterly models exist

(Williams and Wright; Pirrong).  Chambers and Bailey propose a monthly framework, but

1 They used deflated series for observed price series, and deflating could introduce
autocorrelation that did not exist in the nominal series.
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assume a monthly harvest for seven commodities, including soybeans whose production is

seasonal.2

This paper overcomes many of these limitations by specifying and simulating a model

which allows price distributions to be recovered from the structural model. Given estimates of

the distributions, the model can generate price series similar to those faced by agents in the

industry, allowing us to overcome the small sample problem and thereby analyze long-run

economic consequences of (say) risk management strategies.  In order for the results to be useful,

this paper models the U.S. corn market at a monthly frequency.  Corn is a major crop that is

storable and homogenous (relative to other commodities), satisfying the basic characteristics of a

commodity for which the storage model was originally conceptualized.  Moreover, the volume of

trading for futures contracts for corn is the largest among agricultural commodity futures.

The paper is organized as follows.  The next section discusses the price series to which

the model is calibrated.  Then, the conceptual model is developed, and the numerical model is

specified.  The subsequent section reports and examines the equilibrium solution and price

behavior implied by the model.  The results suggest a potential value of the rational expectations

commodity storage framework in empirical price analysis.  Monthly distributions of corn prices

follow data-consistent seasonal trends in first and second moments.  In addition to commonly

observed price behavior, the model generates possible, but improbable seasonal price patterns in

some “years,” providing rich implications for understanding price behavior.

2 Part of the validation of this model focuses on its prediction that prices follow a two-regime
process depending on whether or not inventories are held (Deaton and Laroque, 1995, 1996;
Chambers and Bailey; Ng; Michaelides and Ng).  All studies have found some supporting
evidence.  Beck tests an implication of a nonnegative constraint on storage, i.e., the difference in
asymmetry of price distributions between storable and non-storable commodities, and finds no
significant difference.
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Cash and Futures Price Data

Model calibration requires a sample of actual cash prices, but there is no such thing as

“the price” of corn.  Individual transaction prices differ by location, quality, and delivery terms.

This diversity is illustrated by “cash prices at principal markets” published by the Grain and Feed

Market News (USDA/AMS).  Prices are reported as daily ranges of transaction prices at various

locations, which can be averaged over a week’s, month’s, or year’s period.  Nonetheless, a

published nominal cash price series for No.2 yellow corn at a Central Illinois market can be

regarded as a representative example of corn prices.  The focus on nominal prices is consistent

with measuring risk in terms of deviations of nominal prices from expected (nominal) prices.

The sample period is the nine crop years from 1989/90 through 1997/98, i.e., 108

monthly observations from September 1989 through August 1998.3  There is no obvious trend;

the prices are variable with positive autocorrelation; and there is a prominent spike in early 1996

(Figure 1).  Regarding the price series as an ARMA process, both the Akaike information and

Schwartz’s Bayesian criteria suggest a second-order autoregressive model with third- and fifth-

order moving average terms.  Over the sample period, the fitted equation is:

(1) Pm = 0.020 + 1.451 Pm-1 – 0.530 Pm-2 + em + 0.302 em-3 – 0.238 em-5

       (0.018)  (0.084)         (0.085)                 (0.101)        (0.102)

where approximate standard errors are reported in parentheses, e is the error term, m is time in

months, and observations in July and August 1989 are used for the initial lagged observations.

According to Ljung-Box statistics, the null hypothesis of white residuals is not rejected (p value

= 0.7936 for the first six lags).

3 This is a relatively market-oriented time period.  The change in the commodity loan program
was initially enacted in 1985, and supply management programs for corn introduced planting
flexibility in 1989 and 1990 (Westcott).
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The prices can also be described by estimating monthly distributions, and to allow for

skewness and non-zero kurtosis, a Gamma distribution is fitted to the sample by method-of-

moments estimation.4  These distributions are plotted in four separate panels; the September

price distribution is plotted in all panels for ease of comparison (Figure 2).  The estimates seem

to provide sensible approximations.  The modes increase over the storage period through April

reflecting higher storage costs, and revert toward the harvest level during the growing season.

The probability masses of prices during the harvest and immediate post-harvest periods are

relatively centered.  Prices become more dispersed as planting approaches, and this trend

continues until August, when it is reversed in anticipation of the new crop.  The distributions are

positively skewed.  These features of the estimated distributions should be reproduced by any

useful model.

The prices of futures contracts reflect market expectations about supply and demand.

Assuming no risk premium, the current futures contract price equals its expected value at

contract maturity, and if there is no basis risk, futures and spot prices converge at maturity.  In

other words, futures prices for any individual contract in an efficient market are not mean

reverting, since they are the expected values of a particular month’s price.5

4Let X be a random variable having a Gamma distribution with parameters α and β.  Then,
[ ] βα=XE  and [ ] 2Var βα=X .  Method-of-moment estimators are obtained by equating

theoretical moments to its corresponding sample moments.  Thus, ( ) ( )�
=

− −=
n

i
in XXX

1

2

1
1β̂  and

Xβα ˆˆ = , where X  is the sample average.

5A price risk premium, if it exists, is likely to be small, and the existence of a yield risk premium
is debatable (see Wisner, Blue, and Baldwin; Zulauf and Irwin). Previous analyses, which report
mean-reversion in futures prices, may suffer from statistical weaknesses (Irwin, Zulauf, and
Jackson).  Also, the results may be misleading due to constructing a sequence of prices from
nearby futures contracts prices, i.e., using the current maturing contract prices until near the
maturity date and then switching to the subsequent maturing contract prices.
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The variance of futures prices for an individual contract is influenced mainly by the flow

of information and its uncertainty.6  Variability is expected to increase as contract maturity

approaches (Samuelson), and is affected by the seasonality in the information flow in the

underlying market.  For a December corn futures contract, for example, the time-to-maturity

effect means that price variability is larger in December than in May, ceteris paribus.

Uncertainty about crop size during the growing season is a seasonal effect that coexists with the

time-to-maturity effect, producing more price volatility in the summer than in December, ceteris

paribus.  Consequently, the May (for example) futures contract prices will be more variable than

the December contract prices at their respective months of maturity.

The foregoing is illustrated by estimating monthly price distributions for selected futures

contracts.  Monthly price observations were constructed by averaging the settlement prices of the

first and third Wednesdays (Thursday, if Wednesday was a holiday) of every month.  December

corn contract prices for the 12 months prior to maturity for the years 1990 through 1997 are

fitted to a Gamma distribution by method-of-moment estimation (see footnote 3).  The

magnitude of the variance relative to the mean was, however, too small to estimate the

distributions for December contract prices in December (a year prior to maturity) and January.

The distributions are plotted in Figure 3.  Similarly, distributions for the May contract prices are

estimated from 1991 through 1998 (Figure 4).

For both contracts, the time-to-maturity effect is clearly observed—the longer the time-

to-maturity, the less dispersed the price distribution, and the dispersion seems to increase

6 Economic variables that describe supply and demand conditions, and market structure measures
such as the ratio of speculators to hedgers are other factors that affect futures price volatility
(Streeter and Tomek).
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monotonically over time.  This is consistent with findings in the literature (e.g., Fackler and

Tian; Goodwin, Roberts, and Coble).  For the December contract, the modes of the distributions

in early months lie to the right of that of the maturity month’s distribution, which may support

the existence of a yield risk premium (as in Wisner, Blue, and Baldwin).  But, the sample is too

small to draw a definitive conclusion.  Comparing the maturity-month distributions across the

contracts, May contract prices have a larger dispersion than December contract prices, as

expected.

Conceptual Model

The model incorporates minimum key features of the corn sector in the 1990s.7  Namely,

the crop is planted in April and harvested from September through November by producers who

are assumed to be expected profit maximizers.  The planting decision is conditional on a realized

supply shock.  Between planting and harvest, monthly crop estimates provide information on the

expected new crop size, and during months preceding harvest, news arrives regarding how much

of the annual crop will be harvested next month.  A larger-than-average proportion of the annual

crop may be harvested in September of an “early” year, or in November of a “late” year.  Agents

adjust their expectations accordingly.  Available supply at the beginning of each month is either

consumed or stored.  Monthly demand is subject to shocks, and risk-neutral arbitrageurs make

monthly storage decisions.8

7 Supply management and governmental stocks programs have had major impacts on price
variability by limiting producers’ flexibility to respond to market signals and encouraging
storage of grain beyond market incentives.  The programs evolved in the farm legislation of
1985, 1990, and 1996 toward less governmental involvement; under the 1996 farm law, supply
management programs no longer exist, and stocks programs no longer provide high price
supports or storage subsidies that encouraged grain stockholding in the past (Westcott).

8 Later, it is shown that this assumption is not restrictive.
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All decisions depend upon the state of the world, defined by the month of the year,

available supply, the realization of demand and supply shocks, expected crop size, and expected

timing of harvest.  Specifically, units of time are indexed by t and m, where t is calendar year and

m is month (1 = January).  To simplify notation, the index t is omitted whenever the implied

indexes are unambiguous, and the index m appears as both subscripts and superscripts.

Producers decide how large a crop to plant in April, but due to uncertain growing conditions, the

planted crop size is an estimate of crop size at harvest.  During the months between planting and

harvest, the expected crop size, or crop estimate (H), follows a random walk:

(2) 10511 ,,, �=+= ++ mHH mmm ε ,

where εm+1 is a mean-zero independent disturbance.  In the model, planting is completed at the

end of April, and the May crop estimate equals the planted crop size, i.e., H5 = H4.

During September and October, random proportions of the expected crop size are

actually harvested; the remaining crop is harvested in November, revealing the true total crop

size.  Thus, the incoming harvest (h) is

(3) 11109 ,,, == mHh mmm α

where αm is a random number bounded between 0 and 1 for m = 9 and 10, and α11 is a number

between 0 and 1 such that �
=

=
11

9
11

m
mhH .  Expectations of these random proportions, 1ˆ −mα  (=

E[αm], where E[⋅] is the expectation operator), are revealed as news, indicating whether the

majority of the crop is harvested early, late, or at average timing.

Producers, consumers, and storers form expectations and base their decisions on

information available at the beginning of each month, which is represented by a vector of state
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variables θθθθm.  Thus, expectations given information at month m are conditional on θθθθm, i.e.,

[ ] [ ]mm θ⋅≡⋅ EE .

Each producer is a price taker and makes the planting decision based on April’s

beginning inventory and supply shock, which defines April’s state of the world.  Supply shocks

represent unsystematic changes in costs of production.  Production technology is assumed to be

fixed.  The expected profit-maximizing condition implies a supply function where planted crop

size (H4) is an increasing function of expected (discounted) price at harvest.  Expected price at

harvest is an average of expected prices in September through November weighted by

proportions of incoming harvest in respective months.9  The resulting supply equation is

(4) ( ) �
�
�

�

�
�
�

�
�
�

�
�
�

�

+
�= −
=

y
r

PSH m
m

m
m ,4

11

9
44 1

E
4

αθ ,

where [ ]⋅
4θ

S  is the state-dependent aggregate supply function, y is random supply shock, and r is

the monthly discount rate.

Monthly available supply (A) is equal to the carryover (s) from the previous month,

except in months when the carryover is augmented by the incoming harvest (h):

(5)
�
�
�

=+
=

=
−

−

.,
,,,
1110,9,

128,1

1

1

mhs
ms

A
mm

m
m

�

9 The producer’s problem is to maximize expected profit:

[ ] [ ]
( ) [ ]yHC

r
PHH

m
m

mm
mH

,
1

EEmax 4

11

9
4

4
44 4

4
θ−�

�

�
�
�

�

+
= �

=
−αΠ ,

where [ ]⋅
4θ

C is the state-dependent total cost to plant and maintain a given amount of crop size,
and r is the discount rate.  Given that Hm is a random walk and producers are price takers, the
first-order condition with respect to H4 is:

( ) [ ]yHC
r

P
m

m
m

m ,
1 4

11

9
4 4θ

′=�
�

�
�
�

�
�

+=
−α4E .

Solving for H4 yields the supply function (equation 4).
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Quantity demanded (q) is a state-dependent function of current price and i.i.d. demand shock

(um),

(6) [ ] 121 ,,,, �== muPDq mmm mθ

where 0<∂∂ mPD
mθ

 and [ ] ∞=−

→ mq
qD

m
m

1

0
lim θ ; i.e., consumption must be positive for the market to

clear.

Storage is carried out by risk-neutral arbitrageurs, whose profit equals the expected

appreciation in price less opportunity and carrying costs associated with storage.  Assuming a

constant monthly discount rate r and denoting the total carrying cost as [ ]sK
mθ

, the storer’s

maximization problem is:

[ ] [ ]
( ) [ ] 12,,1,
1

EEmax 1
10

�=−−
+

= +
+≥

msKsP
r

sP
mmm

mmm
mms m

m
θΠ .

Carrying cost includes the physical cost of storage plus a possible financial risk premium

minus the convenience yield of stocks (Brennan).10  The marginal physical cost of storage is

assumed to be constant per unit of storage and time, and the premium for financial risk is

ignored, since it is very small or nonexistent (Leuthold, Junkus, and Cordier) and irrelevant to

risk-neutral storers.  Convenience yield is defined as the benefit from owning the physical

commodity that is not obtained by holding a futures contract, such as the ability to profit from

unexpected orders or the ability to keep an operation running.  Convenience yield reflects the

market’s expectations concerning the future availability of the commodity; thus, it is state-

10 This risk premium is associated with the risk from carrying stocks, such as financial loss from
an unexpected fall in prices.
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dependent and larger the greater the possibility of a shortage.  Depreciation in quality due to

storage is assumed to be unimportant.

The first-order conditions for the above maximization problem is the complementary

slackness condition:

(7)

[ ]
( ) [ ]

[ ]
( ) [ ] 10,9,8,0,
1

,12,11,7,,1,0,
1

1

1

=≥′+≤
+

=>′+=
+

+

+

mssKP
r

PE

mssKP
r

PE

mmm
mm

mmm
mm

m

m

θ

θ

θ

θ
�

where [ ]⋅′
m

Kθ is the state-dependent marginal carrying cost per unit of storage.  Note, this

specification allows for risk-averse storage behavior despite the assumption of risk neutrality

(e.g., Just).11  These conditions guarantee no arbitrage opportunities in equilibrium. A positive

amount is stored whenever expected appreciation in price is sufficient to cover the carrying cost.

If nothing is carried over, the price expected for the following period may not be as high as the

current price.  Imposing positive consumption removes the possibility of stock-outs except in the

months preceding harvest.

11 The utility-maximization problem for a risk-averse storer can be expressed in terms of the
certainty equivalent of a risky prospect, which is defined as the amount of profit for which the
individual is indifferent between this certain amount and a risky prospect (Mas-Colell, Whinston,
and Green, Ch. 6).  Denoting the risk premium—the difference between the mean of the risky
profit and its certainty equivalent—as ρ, and including the opportunity cost and constant
marginal physical storage cost k in the profit, the certainty equivalent maximization problem is:

[ ]
( ) [ ] 12,,1,
1

Emax 1

0
�=−−−

+
+

≥
mskssP

r
sP

mmmm
mmm

sm

ρ .

For a solution to exist at some *
ms  > 0, we must have [ ] ( )rPmm ++ 1E 1  – Pm – k – ρ′[⋅] > 0 at some

sm∈ (0, *
ms ).  Since we observe [ ] ( ) kPrP mmm −−++ 1E 1  < 0 in some months empirically, we must

have ρ′[⋅] < 0 to guarantee a solution.  Furthermore, the second-order condition implies a
sufficient condition, ρ′′ [⋅] > 0.  Thus, the risk premium is a decreasing and convex function of
storage.  But, this is identical to the model assuming risk neutrality, replacing the carrying cost,

[ ]sK θ , with the sum of the physical storage cost and risk premium, ks + ρ[s].
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Equations (2) through (7) imply an equilibrium characterized by a rational expectations

price function, [ ]θΦ=P , and a planting equation, [ ]44 θΨ=H , which solve the following

discrete-time, continuous-state, functional equations:

(8a) [ ] [ ][ ] ( ) [ ]
[ ][ ] ( ) [ ] [ ]{ }�

�
�

=′−+
=′−+

=
−

−
+

+

10,9,8,,1Emax
,12,11,7,,1,1E

1
1

1

1

msDsKr
msKr

mmmm

mmm
m

mm

m

θθ

θ

θ
θ

θ Φ
Φ

Φ
�

(8b) [ ] [ ] msAD mmmm
∀=−− ,1 θθ Φ

(8c) [ ] [ ][ ][ ]44
ˆ

4
θθ ΨΨ θ PS=

(8d) [ ] [ ] ( ) �
�

�
�
�

� += −

=
� 4

4
11

9
44 1Eˆ HrHP m

m
m

m θΦα

where ][ˆ ⋅P  represents the expected harvest price given a planted crop size of H4, and the state

variables in each month are:

{ }
{ }
{ }
{ }�
�

�

�
�

�

�

=
=
=

=

otherwise.,,,
,10,9,8,ˆ,,,,

,7,6,5,,,,
,4,,,,

mm

mmmm

mmm

mm

m

uAm
mHuAm
mHuAm
myuAm

α
θ

Equation (8a) states that current price must equal discounted expected future price, less

the marginal carrying cost K′, except in months prior to harvest.  During August through

October, stock-outs, although improbable, could occur  in which case the price equals the level

implied by consuming all the carryover from the previous month, [ ]1
1

−
−

msD
mθ

.  In all months, the

equilibrium price depends on inverse demand evaluated at available supply that was not stored,

equation (8b).  Equation (8c) is the planting function; the crop planted is the state-dependent

supply function evaluated at expected harvest price.  Expected harvest price, in turn, depends on

planted crop size, because crop size influences price received at harvest (equation 8d).

The state variables θθθθm represent information available at the beginning of each month.

Three states exist in all months:  the month of the year, the available supply level, and the
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realized demand shock.  In April, a supply shock conditions the planting decision; during May

through October, the expected size of the incoming crop is relevant; and expected proportions of

crop harvested in the subsequent month are revealed during August through October.  In

November, the information of the realized crop is incorporated into available supply.  Storage

and consumption are endogenous variables that are derivable from price, and hence are functions

of the state variables.

The existence of price functions in a competitive storage model with seasonal production

is proved in Chambers and Bailey.  The assumption of rational, forward-looking behavior among

the agents implies that stochastic dynamic programming or a similar recursive method must be

employed to solve the model.  The possibility that nonnegativity constraint on storage may bind

adds further complications.  Since the functions cannot be solved in closed form, the problem is

solved numerically.

Numerical Model

Solution Method

The recent literature on numerical solution methods uses variations of a functional

approximation method to replace the original functional equation problem with a finite-

dimensional (discrete) problem (e.g., Williams and Wright; Rui and Miranda; Deaton and

Laroque (1992)).  Miranda has compared the accuracy and efficiency of different numerical

strategies for computing approximate solutions to the nonlinear rational expectations commodity

market model, and his results support the superiority of the cubic spline function collocation

method over the traditional space discretization, linearization, and least-square curve-fitting

methods.
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In general, the solution to a functional equation problem is a function defined over a

domain of multiple state variables, Y = F[X1, X2, …, Xχ].  For numerical solution methods, this

specification can be simplified by discretizing all state variables but one, say X1.  Then, the

solution may be regarded as a collection of single-variable functions, Y = Fδ[X1], δ ∈  ∆, where

each element of ∆  corresponds to a combination of discrete values of the remaining state

variables, X2, …, Xχ, and the continuous variable X1 can be regarded as the “principal” state.

This scheme is implemented by the cubic spline collocation method involving three steps.

First, since the month of the year is a discrete state variable, the solution to the problem, an

unknown price function P[⋅], is decomposed into 12 monthly component functions Pm[⋅], m = 1,

…, 12.  Unknown price functions Pm[⋅], the planting function Ψ[⋅], and expected harvest price

function ][ˆ ⋅P  are approximated by finite linear combinations of known cubic b-spline functions,

respectively. 12

Second, for the price and planting functions, one of the state variables, available supply at

the beginning of the month, is chosen as the “principal” state variable, and a finite number of

points mAυ , υ = 1, … N, are selected within its range as the collocation nodes, where the

function’s approximant is required to hold precisely.  Discrete levels of crop size 4
υH , υ = 1, …

NP, are selected as the collocation nodes for the expected price function.  The collocation nodes

12 Cubic b-spline functions are:

( )
( )( )

( )
�
�

�
�

�

≤=≤−
≤=−−

= −

−

otherwise0
21if1

1if161
3

3
4

2
3
2

w
AA

w
AA

qq
qqq

A υ

υ

υφ

where ( ) NAAw −=  and Aυ = A  +υw.  These piece-wise cubic functions have continuous first
and second derivatives.
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are equally spaced between the minimum and maximum of the approximation range.  Thus, the

function approximants are, in vector notation:

(9) Pm[Am] ≈ ΦΦΦΦm[Am]cm, ∀ m

ΨΨΨΨ[A4] ≈ ΦΦΦΦS[A4]cS

P̂ [H4] ≈ ΦΦΦΦP[H4]cP

where Pm[⋅] and cm are N by Θm (the number of state variables in a given month less one), ΦΦΦΦm[⋅]

and ΦΦΦΦS[⋅] are N by N, ΨΨΨΨ[⋅] and cS are N by J, P̂ [⋅] and cP are NP by 1, and ΦΦΦΦP[⋅] is NP by NP.

Choosing the same number of basis functions and collocation nodes is not necessary, but it

minimizes computational cost (Miranda and Fackler, 1999a).

Third, the continuous distributions of random state variables are replaced by

approximating discrete distributions.  Demand and supply shocks assume Im-by-1 vector um and

J-by-1 vector y with probability vectors wm and x, respectively.  Actual and expected proportions

of crop harvested assume similar Gm-by-1 vectors ααααm and 1ˆ −mα  with corresponding probability

vector zm, so that, for example, actual proportions of crop harvested in September, α9, have a

distribution identical to their projections revealed in August, 8α̂ .

The expected crop size (H) is discretized to an L-by-1 vector with elements that are

equally spaced with increments ∆H, and a priori probability vector v is associated with it in May.

For all adjacent months between May and November, the crop estimate is assumed to follow an

L-state Markov chain with Markov transition matrixes with elements:

{ } 10,5,,,1,,1
, �� ===== + mLklHHHHPv l

m
k

mm
lk ,

where the l-th crop size is denoted as Hl.  Following Pirrong, the transition probability is

calculated as:
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( ) ( )21, NN hhvm
lk −=

where h1 = ( )( ) mlkk HHH σ−++ 21 , h2 = ( )( ) mlkk HHH σ−+ − 21 , σm is the standard deviation

of the error term εm in equation (2), and N(⋅) is the standard normal cumulative distribution

function.  In other words, the probability that the expected crop size will equal Hk in the next

month, given that its current value is Hl, is equal to the probability that an i.i.d. random number

drawn from the standard normal distribution will fall in an interval of length ∆H centered on Hk –

Hl, standardized by the standard deviation of the monthly error term.

The above discretization implies that the original functional equation problem (8a)–(8d)

is replaced by a finite-dimensional problem with an overall dimension of (� = 3,2,1,12,11
2

m
mIN

� =
+

7,6,5m
m LI )JLGI

m
mm ++� = 10,9,8

+ NNP, where unknowns are collocation coefficients,

storage levels, planted crop size, and expected harvest price.  The discretized model is presented

in Appendix 1.

The equilibrium conditions have a recursive structure in that Ψ  does not enter the

storer’s arbitrage equation (8a).  From the storer’s point of view, harvest is exogenous, and

information on expected crop size becomes available only after the crop has been planted and

growing conditions become known.  Hence, a solution can be obtained in a sequence of

independent operations.  In the first stage, equations (8a) and (8b) are solved to determine the

equilibrium market price at all possible states.  In the second stage, these price functions are used

to determine expected harvest price ( P̂ ) from equation (8d), based on transition probabilities that

link future states to the choice of planted crop size (H4).  Finally, the relationship between P̂  and

H4 can be used to solve for the equilibrium planting equation in (8c).
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To solve for price function coefficients and storage levels, Miranda proposes a two-step

function iteration algorithm, where the solutions to monthly storage are found by holding the

guesses for monthly price functions constant, and vice versa.  Here, we combine his proposal and

backward induction similar to that of dynamic programming.13  Prior to the initial iteration, the

monthly collocation nodes (the discretized available supply levels) and initial values for the price

function coefficients c are assigned.  The iteration begins by solving equation (8a) for October

carryover levels s10 with the November price coefficients c11 fixed using Newton’s method,

which, given a function f[x]: ℜ n → ℜ n, solves for an n-vector x that satisfies f[x] = 0.  At each

iteration, the function is approximated by its first-order Taylor series expansion about the latest

guess and the root of the approximation is used as an improved guess for the root of f.  The

process is repeated until the guesses converge.  Once such storage levels are found, equation (8b)

is solved for the (updated) October price function coefficients 10ĉ  using L-U factorization.14

Using these updated October price coefficients, equation (8a) is solved for September

carryover levels s9, which is used to obtain new values of the September price coefficients 9ĉ ,

and the procedure is repeated for the remaining ten months backwards in time.  At the end of a

12-month iteration, the norm of the difference between the old and new November price function

coefficients, c11 and 11ĉ , is compared to a predetermined convergence level.  If it is below the

level, the new set of coefficients becomes a part of the solution and the algorithm stops;

otherwise the iteration resumes with the new set of coefficients replacing the old guess.

13 In fact, the equilibrium price conditions in equation (8a) match the optimal conditions from a
dynamic programming problem that maximizes social welfare (or the discounted stream of
expected future surplus) by choosing storage levels, given an exogenous harvest size.

14 L-U factorization is an algorithm that solves a linear equation system Ax = b, by decomposing
the A matrix into the product of lower and upper triangular matrices.  In general, it is more
efficient than computing the inverse of A (Mathworks, Inc.).
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Using the equilibrium price functions, expected harvest price function is solved in the

second stage.  Prices during the harvest months are obtained from simulating the corn market

from various availability levels and planted crop sizes in April through November for 5,000

times.  Initial starting points are selected as combinations of the N collocation nodes used for

April’s price function and NP levels of crop size between 5 and 15 billion bushels.  Expected

harvest price )ˆ(P  is calculated as the average (over the 5,000 simulations) of September,

October, and November prices weighted by the ratio between crop harvested in each month and

annual crop size.  For each availability level, we can interpolate a functional relationship

between crop size and expected harvest price over the range of crop size as:

[ ] NnAnnPPn ,,1,ˆ
,4 �=∀= cHΦP

solving for cP using L-U factorization, which is equation (8d).

Lastly, analogously to the monthly price functions, Miranda’s two-step algorithm can be

applied to solve for the planting function defined in equation (8c).  First,

[ ] [ ][ ]PPSS S cHΦcAΦ θ 44 =

is solved for planted crop size H4 with the supply coefficients cS fixed using Newton’s method.

Once such crop size is found, the supply coefficients are updated according to:

[ ] SS cAΦH 44 =

via L-U factorization.  The iteration is repeated until the coefficients converge.

Parameter Specification

Parameter specification is motivated by an effort to represent observed market conditions

during the 1990s.  Monthly bounds of available supply ( mA  and mA , m = 1, …, 12) are imputed

from quarterly total supply and ending stocks reported by the Economic Research Service at the

U.S. Department of Agriculture, but collocation ranges are expanded to accommodate broader
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ranges of solutions (see Peterson for details).  The expected crop size in May is discretized to L =

10 values, equally spaced values between the minimum and maximum annual harvested crop in

the sample period (6.3 to 10.1 billion bushels).  The values are associated with probabilities

assuming a normal distribution with data-consistent mean and standard deviation.  Subsequently,

the crop estimate is revised at the beginning of each month from June through November (when,

by assumption, the actual crop size is revealed)15 with Markov transition probabilities.  The

standard deviations of the differences between the adjacent months’ crop estimates are used as

the standard deviations of the error terms in equation (2).

Proportions of crop harvested during September, October, and November are based on

National Agricultural Statistics Service’s crop progress report.  Since 91.7 percent of the U.S.

annual crop was harvested during the three months during 1989/90 and 1997/98, the percentages

are adjusted so that the average of the three-month sum equals one.  The adjusted September,

October, and November proportions are 0.12, 0.55, and 0.32, respectively.  The reported

percentages indicate that individual September percentages are skewed to the right.  Hence,

normality is assumed for their logarithms.  Because October percentages are not clearly skewed,

they are assumed to be normally distributed.  September and October proportions assume G9 =

G10 = 3 values; since the remaining crop is harvested in November, November proportions

assume G11 = 9 values.

15 According to Garcia et al., “errors [of USDA crop forecasts] are quite small by the time of
November announcements (p.561).”
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Monthly demands are specified as constant elasticity functions with multiplicative

demand shocks, with the price elasticities set at –0.25 for the month.16  The demand functions are

calibrated to the mode of the estimated monthly price distributions and the mean of monthly total

disappearance (quarterly total disappearance divided by three). Demand shocks (um) are specified

as normal random variables with parameters that are calculated from the ratio between

consumption and predicted consumption, assuming the constant elastic demand functions with

calibrated coefficients.  The shocks are discretized to assume Im =I = 5 values for all months

according to Gaussian quadrature principles, so that the discrete distribution possesses the same

first 2I–1 moments as the continuous distribution (Gerald and Wheatley).

The supply equation is also assumed to take a constant elasticity form with a

multiplicative supply shock (y) with the supply elasticity is set at 0.2.17  To obtain the constant,

the function is calibrated to the sample-average harvest price discounted to April ($2.30 per

bushel), the mean of annual production, and the mean of supply shock set to one.18  Because

expected harvest prices are not observed, the standard deviation of y is inferred from the sample.

The calibrated supply curve (with y = 1) is evaluated at the minimum and maximum observed

16 In the literature, the estimated annual demand elasticity varies from –0.54 to –0.73 (Holt,
1994; Holt and Johnson; Shonkwiler and Maddala).  Using 1957 to 1975 data, Subotnik and
Houck report the ranges of quarterly price elasticities of feed, of food, and of exports as –0.15 to
–0.22, 0 to –0.034, and –0.71 to –2.0, respectively.

17 The estimated acreage elasticity with respect to changes in expected price ranges from 0.05 to
1.04 (Holt, 1994, 1999; Chavas and Holt, 1990, 1996; Tegene, Huffman, and Miranowski; Lee
and Helmberger), with an apparent consensus around 0.2.  The estimated supply (production)
elasticity with respect to price ranges from 0.28 to 0.39 (Shonkwiler and Maddala).

18 Discounted harvest price is calculated for each crop year in the sample as a weighted average
of September, October, and November prices, where each month’s price is discounted to April
and weighted by the percentages of crop harvested in that month.  The monthly discount rate is
based on an annual rate of 0.1 (r = 0.0083 = 0.1/12).
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harvest prices and compared to the minimum and maximum observations of planted crop,

respectively.  The average of squared deviations between predicted and observed planting is used

as an estimate of the variance of y.  Assuming a normal distribution, J = 30 discrete levels of y

are chosen by Gaussian quadrature.

The net carrying charge of storage is specified as the difference between current and

expected prices, and consists of the physical storage costs and convenience yield.  If the expected

price in the next period differs from the current price only by the costs of storage, prices would

increase indefinitely, on average, relative to the previous month.  Yet, observed prices typically

increase from October through May and then decrease.  This puzzle of price backwardation is a

long-standing issue (Frechette and Fackler), and in a conventional rational expectations storage

model, aggregate stock-outs are used to account for price backwardation.  But zero stocks of

corn have never occurred in recorded history (though they were very small in 1934 and 1936).

Thus, we model convenience yield, despite the fact that it is unobservable, as a source of

price backwardation.  To be consistent with the observed price and inventory behavior,

convenience yield is assumed to be a decreasing, convex function of storage level (s) that shifts

according to levels of expected crop size (H).19  Specifically, convenience yield is

( )[ ]HHsCY mmmmm
m −= ζω ξ exp , where ωm, ξm < 0, and ζm are parameters, and H  is the

historical average crop size.  Setting the elasticity parameter ξm to –1, the constants ωm are

obtained by calibrating these functions through the monthly average convenience yield, storage

level, and historical average crop size.  Observations for convenience yield are calculated as the

remainders of the non-arbitrage equation evaluated at monthly prices CYm = Pm + k – Pm+1/(1+r),

where the monthly physical cost of storage (k) and the discount rate (r) are specified as 3 cents

19 This is similar to Rui and Miranda, who specified a decreasing convex storage cost.
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per bushel and 0.0083, respectively.20  Convenience yield is assumed to be decreasing in crop

size; the associated shift parameters ζm are calibrated so that the shift factors ( )[ ]HH mm −ζexp

take on their maximum value when crop estimates are lowest.

For improved computational accuracy, quantities and prices are scaled so that one equals

10 billion bushels and $10 per bushel, respectively.  Monotonicity is imposed on functional

solutions during the solution process.  The model is solved for a convergence tolerance level of

10-8.  Cubic spline interpolation and Gaussian quadrature methods are calculated by the computer

routines developed by Miranda and Fackler (1999b); the algorithm for L-U factorization built in

MATLAB version 5.3 is used.

Model Solutions

Equilibrium Spot Price Functions

The rational expectations model explains observed economic behavior through supply

and demand shocks, but the combined effects are difficult to analyze.  Thus, the model is solved

in a series of nested cases with identical parameter values, starting with the case of certainty and

exogenous supply (Case 1).  Then, crop estimates, demand shocks, and harvest timing are

introduced sequentially (Cases 2–4).  Case 5 endogenizes the planting decision, and Case 6 adds

uncertainty regarding production costs.  The solution times reported are for a multiple-processor

cluster of six servers running the Windows® 2000 operating system, where each server has four

Intel Pentium® III Xeon 550 megahertz processors and 4 gigabytes of RAM.

20 The monthly averages of convenience yield were close to zero from October through April and
ranged from 9.5 to 21.2 cents per bushel during the remaining months; the convenience yield
was set to zero for months October through April.
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Certainty (Case 1).  The states defined by demand shocks, expected crop size, and

harvest-timing, respectively, are set to one (I = L = Gm = 1), and the states of these variables are

set to the observed means.  The only state variable is the quantity available at the beginning of

every month.  With the degree of interpolation (N) of 30, the dimension of the model is 720 ( =

2×12×N) with 360 unknown price function coefficients c and storage levels, respectively.  The

model converges in 69.0 seconds.

The equilibrium price functions are monotone decreasing functions of available supply in

all months (Figure 5).  Theoretically, in months prior to harvest when stock-outs could occur, the

equilibrium price coincides with the inverse consumption demand function at low supply levels,

but lies above the consumption demand at higher supply levels.  Thus, price functions are kinked

(Williams and Wright).  Kinks are not observed in Figure 5—the unevenness of the functions is

due to MATLAB’s graphics—since the empirical supply bounds do not include stock-outs, and

the price functions are not defined for availability of, or close to, zero.  But, the functions are

graphed for unrealistically small stock levels in some months, and prices need to be evaluated

relative to the realistic domains of availability.  For instance, the November price line lies above

the other lines, but November prices correspond to relatively large supplies.  In contrast, July

prices result from smaller supplies and are typically higher than November prices even though

the November price line lies above the July line.

In months after harvest, prices are expected to appreciate to cover storage costs.  Hence,

the expected price in the subsequent month lies to the right of the current price.  In months after

planting but before harvest, net carrying cost becomes positive since convenience yield exceeds

physical storage cost.  In July, for example, the expected August price is lower than the current

price.
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Given a level of availability at the beginning of the month, the model carries over almost

a fixed proportion to the next month.  Storage is basically a linear function of availability for

each month.  The average ratio of carryover to available supply ranges from 0.77 in September

through 0.87 in December, which are higher than the range of 0.42 to 0.73 of the sample-period

(quarterly) data.  Again, if the model allowed a possibility for stock-outs, the storage function

would exhibit a kink as the non-negativity constraint binds.

Adding Uncertain Crop Size, Demand, and Harvest Timing (Cases 2–4).  The crop-size

estimate is introduced as an additional state variable in May through October in Case 2 (L = 10).

The dimension of the model increases to 3,960 ( = 2×(6×N×L + 6×N)), and the model takes

1901.9 seconds (31.7 minutes) to converge.  By introducing demand uncertainty in Case 3 (I =

5), the dimension of the model is 19,800 ( = 2×(6×N×I×L + 6×N×I)), and the model converges

after 53070.8 seconds (14.75 hours).  With varying timing of harvest in Case 4 (G8 = G9 = 3, G10

= 9), the dimension of the model reaches 55,800 ( = 2×(N×I×L×(G8 + G9 + G10) + 3×N×I×L +

6×N×I)).  It takes 449,182.65 seconds (5.2 days) for the model to converge.

With additional state variables, the number of lines representing price functions (similar

to Figure 5) increases accordingly, and the functions exhibit more crossovers and larger ranges.

The range of the price functions extends from $1.05 to $5.40 at 6 billion bushels of availability

in Case 4.  Equilibrium storage is similar to the certainty case, but multiple functions exist for

months with additional states.  The average proportions of availability that is carried over are

unaffected from the certainty case.

The relationships among equilibrium price and state variables are intuitive.  The

numerical solution indicates that equilibrium prices are high when crop-size estimates are small,

but as storage availability increases, this impact of crop estimates on prices declines.
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Equilibrium prices are higher the larger the demand shock (i.e., smaller quantity), and this impact

is stronger at lower availability levels.  Similarly, prices are more responsive to the changes in

demand shocks when smaller crops are expected.

When a small proportion is expected to be harvested in September, much of the

uncertainty regarding total crop size is transferred to the remaining harvest months, causing

August price to increase for a given level of availability, ceteris paribus.  The impact is more

apparent in the October price function.  Since November is the terminal harvest month, a smaller

expected proportion implies a smaller total crop for the year, shifting the October price function

upward, with the largest impact at low availability levels.  An analogous relationship exists

among price, expected proportions harvested, and crop estimates.  Demand shocks had no

discernable effect on the relationship between price and the expected proportion harvested.

Endogenous Supply and Adding Uncertain Production Cost (Cases 5–6).  Case 4

completes the first solution stage for the full model, where equilibrium monthly price functions

that satisfy equations (8a) and (8b) are found.  Here, the second and third stages are executed to

endogenize the planting decision.  The expected price function has a degree of interpolation (NP)

of 100 and is defined at N = 30 nodes of the planting function.  In addition, the model must solve

for the equilibrium planting level at these N nodes.  Case 5 does not consider supply uncertainty

(J = 1), but when it is incorporated in Case 6, there are J = 30 possible supply functions.  The

additional dimension for Case 6 (over Case 4) is 4800 (= N×NP + 2N×J), where there are N×NP

unknown coefficients of the expected price function, N×J unknown planting function

coefficients, and N×J unknown planting levels.  The additional computing time is 150,061.5

seconds (41.7 hours), 99 percent of which was spent simulating the expected harvest price.
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The upward-sloping lines in Figure 6 are supply functions with an elasticity of 0.2 with

various supply shocks.  A positive supply shock (i.e., lower cost of production) shifts the supply

curve to the right and induces a larger crop to be planted.  The supply curve with y = 1

corresponds to Case 5. The expected harvest price functions are analogous to inverse demand

functions expected at harvest, and are the same for Cases 5 and 6.  The highest of these functions

corresponds to the lowest April availability, and vice-versa—smaller stocks in April increase

expected harvest prices, ceteris paribus.  The planting function is then derived from the

intersections of the expected harvest price and supply curves to determine a relationship between

availability and planted crop size.  Across all supply states and April availability levels, the

function ranges between 5 and 14.4 billion bushels of planted crop.

Time-Series Behavior and Long-Run Distributions

Equilibrium price and planting functions alone do not tell us much about the validity of

the model, since they have no observable counterparts.  Rather, the model is “good” if it

generates equilibrium prices that are comparable to the sample of observed cash prices.  Using

the equilibrium functions, equilibria were sequentially generated for 10,000 “years” by drawing

random disturbances consistent with the model.  The simulation begins in January using the

average ending stocks in December (during the sample period) as the initial starting point (“year”

zero), and proceeds forward in time.  At the beginning of each month, availability is realized as

the amount carried over from the previous month plus any incoming harvest, and determines the

current price through the price function.  Then, the quantity consumed at that price is determined

from the demand function, and the carryover to the next month is the difference between

availability and consumption.  For each monthly variable, basic statistics are calculated and

compared with corresponding statistics from 1989/90–1997/98.  The sample period provides a
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benchmark to evaluate the model, but it does not exhaust the range of possible outcomes.  Prices

are reported in dollars per bushel; storage, consumption, and crop estimates are in million

bushels.  The results are discussed in the same nested sequence as above.

Certainty (Case 1).  It takes about 7 “years” for the model to adjust from the initial state

to a steady state, where the price repeats a seasonal pattern with peaks in May and bottoms in

October, consistent with the observed data.  With certainty, the seasonal pattern is invariant from

year to year.  Long-run monthly price “distributions” are vertical lines at the respective monthly

means.  Hence, only the means of endogenous variables are reported in Table 1.  Simulated price

levels are slightly lower than the observed means in all months except in August.

Corresponding to the seasonal fluctuation in availability, storage declines steadily

through the post-harvest season, since as noted earlier, an approximately constant proportion of

available supply is carried over.  Its average levels are larger than the sample observations by

300 to 400 million bushels.  Consumption levels are consistent with the sample averages, but

reflect the fact that quarterly observations were used to calibrate the demand functions—the

consumption levels within a quarter are similar to actual levels.

Uncertain Crop Size (Case 2).  Analogous to our earlier descriptions, the crop estimate

evolves from May to the beginning of November, when the estimate is regarded as the “true”

harvest size for the crop year.  While the crop estimate is generated as a continuous variable in

the simulation, distinct price functions are associated with the 10 (= L) discretized crop estimate

levels.  The price function that corresponds to the discretized level of crop estimate nearest the

continuous realized value (i.e., minimum norm) is used.  The amounts harvested in September

and October are calculated as the historical average percentages of simulated total crop
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estimates.  The amount harvested in November equals the simulated November crop estimate

less what was harvested in the previous two months in the simulation.

Basic statistics of monthly prices closely follow those from the 1989/90-97/98 sample

(Table 2).  In particular, both means and standard deviations follow the observed seasonal

patterns at similar magnitude, implying that uncertainty regarding crop size during growing

season is an important factor influencing seasonal price behavior.  Comparing simulated mean

and median prices indicates positive skewness in the distributions, confirming Williams and

Wright’s claim that storage induces the skewness in price, although they use a different

specification of supply shocks.  Monthly maximum prices simulated by the model can exceed

$10 per bushel, and minimum prices are lower than the observed lows.  Hence, the model’s price

distributions are leptokurtic (peaked) relative to the data.  The simulated price series is roughly

comparable to the observed data (Figure 1), but when the model economy has only one source of

uncertainty, simulated prices during the growing season are markedly more variable than the rest

of the year.

The basic seasonal pattern of storage, consumption, and availability is similar to the

certainty case, but varies from year to year (Figure 7).  The model stores more, on average, than

is observed in practice (Table 2).  The main role of storage is to smooth out intertemporal

consumption.  In the sample period, the standard deviation of storage is 10 to 40 percent of the

mean, while that of consumption is 8 to 10 percent.  In the model, the standard deviation of

storage ranges between 14 and 35 percent of the mean, and that of consumption ranges between

4.5 to 6 percent.
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The statistics for simulated crop estimates and crop harvested are, in general, consistent

with the sample.21  The average size of the harvest is consistent with sample data, but the

simulated and observed standard deviations of crop harvested differ significantly, suggesting

additional sources of variability in reality.

Uncertain Demand and Harvest Timing (Cases 3–4).  Demand shocks are added at the

beginning of every month as independent normal random variables in Case 3.  This increases

price variability in the non-harvest months to more realistic levels, thereby remedying a problem

with model simulation Case 2.

In Case 4, the states are distinguished according to harvest timing.  At the beginning of

August, a random variable is drawn from a standard normal distribution, and three states are

equally likely to happen, “small,” “large,” or “average.”  The realized value is then used to

calculate the actual percentage of crop harvested in September, which is assumed to be log-

normally distributed.  As previously noted, the normality or log-normality assumption is

convenient, but places a part of the probability mass outside the range of realized values.  Hence,

the calculated percentage is truncated at the maximum observed percentage of crop harvested in

September.

A similar procedure is used to estimate the October harvest, but using a standard normal

distribution at the beginning of September.  Given the August and September news regarding the

incoming proportions of crop in September and October, the remaining proportion of the crop,

that is expected to arrive in November, is known by the beginning of October.  Accordingly, the

21The means of the USDA monthly crop estimates seem to decline, but the sample is too small to
conclude that estimates are biased upward; the literature suggests little or no bias in longer time
series (Sumner and Mueller; Garcia et al.).
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price function that corresponds to the combination of harvest-timing states during the previous

two months is used to determine the price in October.

The two additional state variables correct the variability in monthly consumption and

harvest levels, while maintaining the simulated average price level and its seasonal pattern

consistent with the data (Tables 3 and 4).  The positive skewness and excess kurtosis noted in the

previous cases are preserved as well.  Statistics for other endogenous variables did not change

notably, except storage levels are higher than previous cases.  Despite the fact that percentages

themselves are truncated, the simulated amounts of crop harvested assume wider ranges than the

observed values.

Endogenous Supply and Uncertain Production Cost (Cases 5–6).  In Case 5, the planting

decision is endogenized, assuming that the supply function is known with certainty.  The

planting equation generates a data-consistent average crop size, but one-fourth the observed

variation (Table 5), implying that the specification lacks a source of supply variability.  The

small variation at planting translates into lower-than-observed variability in crop estimates

throughout the growing season, ending in November with about half the variability observed in

the sample.  The variability of crop harvested, however, was mostly unchanged from the data-

consistent magnitude, which suggests that its variability accrues mainly to uncertainty regarding

timing of harvest rather than to its size.  With too small variability in expected crop size, the

price variability during the growing season stays at the same level as the rest of the year, contrary

to the observed seasonal pattern.  Storage variability decreased from the previous cases to a data-

consistent level.  Otherwise, seasonality in average prices levels, storage, and consumption

behavior are unchanged from the previous cases.
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A multiplicative production-related shock is realized as a normal random variable with

mean of one and specified standard deviation in Case 6.  The simulated values of planted crop

are now consistent with observed variability and average levels (Table 6).  Overall, this model is

the most successful at reproducing the patterns in the historical data.  Simulated average price

levels are somewhat higher than observed in the sample (6 to 16 cents), but the seasonal pattern

and skewness are data-consistent—the highest mean price in the simulation (which occurs in

May) exceeds the lowest (in October) by 37 cents, corresponding exactly to the spread in the

sample.  There is seasonality in price variability, although the differences in variability are not as

large as in the sample.  The sample’s standard deviations in May and July are more than double

those in November, but the simulated May standard deviation is only 1.3 times larger than in

November.

Histograms of simulated monthly prices (Figure 8) are long-run unconditional

distributions of prices in a given month—or equivalently, distributions that are conditional on the

month of the year—and are comparable to Figure 2 of the observed prices.  For ease of

comparison, September price distributions are plotted against the selected monthly distributions.

As noted previously, positive skewness is observed in all months.  The modes shift in a

consistent manner from a low around harvest to higher levels in spring.  The spread is small

during harvest months and larger during the summer.  The other endogenous variables are also

largely data-consistent in levels and seasonal trends of means and standard deviations, although

as before, the normality assumption leads to values outside the observed ranges.

The simulated prices are a complex aggregation of current and past information, but the

model is still an abstraction that cannot capture all of the forces that affect prices.  Together,

these facts imply that disentangling the signal and noise is more difficult for observed prices than
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simulated ones.  This can be illustrated by fitting the same ARMA model to the simulated series

as used for the observed prices (equation (1)).  The following equation was fitted to 120,000 (less

36) simulated months.

Pm = 0.313 + 0.857 Pm-1 + 0.026 Pm-2 + em + 0.005 em-3 – 0.028 em-5

       (0.007)  (0.003)         (0.003)                 (0.003)        (0.003)

where approximate standard errors are reported in parentheses and e is the error term.  Compared

to equation (1), the autoregressive coefficients differ substantially, and the null hypothesis of

white residuals is rejected (p value < 0.0001).  When the complexity of the error term

specification is increased (by adding various lags and combinations of moving-average factors),

this discrepancy is partially resolved.  For example,

Pm = 0.133 + 1.415 Pm-1 – 0.465 Pm-2 + (1 – 0.021 L4 – 0.026 L5)
       (0.009)  (0.016)        (0.014)                 (0.003)      (0.003)

(1 + 0.023 L9 + 0.038 L10 + 0.050 L11)(1 – 0.604 L + 0.064 L12 + 0.046 L24) em

      (0.003)      (0.003)        (0.003)            (0.015)     (0.003)       (0.002)

where L is the lag operator.  The coefficients on lagged prices in this equation more closely

resemble those from the sample-based regression, but the null of white residuals is still rejected

(p value < 0.0001 for the first twelve lags).

The full simulation model allows for a variety of post-harvest price behaviors.  In a

typical year, prices are lowest immediately following harvest and then increase through the post-

harvest season.  But, the model permits post-harvest prices increases of various magnitudes; the

largest simulated price increase from November to May is $2.23 per bushel.  Also, prices do not

necessarily increase monotonically, and it is possible (but improbable) to observe initially high

prices in November followed by a seasonal decline.  The largest simulated seasonal decrease is

$2.98 per bushel, which happened once in the 10,000 simulations.
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The model is tested for its robustness under various parameter specifications.  While most

of the parameters are calibrated to the data, five of them must be based on other sources: the

interest rate, storage cost, and elasticity coefficients with respect to demand, supply, and

convenience yield.  The model was re-solved changing each parameter value individually,

holding all others constant.22  The results are summarized in the Appendix 2, each table

corresponding to a parameter.  The mean and standard deviation of each monthly endogenous

variable are reported.  Since the results suggest that the model is robust with respect to realistic

changes in parameter values, and no major discrepancies exists between the model predictions

and the sample data, the current model is used to simulate futures contract prices.

Conditional Price Distributions

Conditional or state-dependent price distributions can be derived from the rational

expectations commodity storage model by simulating many time paths from a given initial state

to a fixed contract maturity month.  By taking the probability distribution of initial states into

account, simulations can be used to generate a series of rational price expectations that is

comparable to observed futures contract prices.  Thus, the model is used to generate probability

distributions of December and May futures prices, conditional on the state in each month starting

from a year prior to maturity.  Monthly state variables are discretized within respective ranges,

and each combination of discrete state variables is regarded as an initial state.  The model is

simulated from all initial states to both December and May, for 10,000 times.

Only state variables that are possibly observable are considered, and the number of initial

states in these simulations varies by month.  From November to April, the initial states are the 30

discrete levels of monthly availability.  During the growing season (May—July), 20 levels of

22 The analysis here does not cover all possible combinations of parameter values.
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expected crop size are specified in addition to the 30 availability levels, implying 600 discrete

initial states.  For August and October, the percentage of crop expected to arrive in the next

month is discretized into 10 values, so that there are 6,000 initial states.  In September, in

addition to all the states already considered, the 10 levels of current harvest determine the

expected percentage of crop arriving in November; including these as initial states implies there

are a total of 60,000 September state combinations.

The simulated relationship between conditional expected prices and their conditioning

factors are unsurprising.  If stocks in February, for example, are abundant, both December and

May expected prices are low and tightly distributed. As available supply decreases, conditional

expected prices rise, and their distributions become more dispersed.  Holding the inventory level

constant, as planted crop sizes become larger in May, for example, median December and May

(a year ahead) prices both decline, and the distributions become less dispersed.

Like the equilibrium spot price functions, these conditional price distributions do not

have an observable counterpart, and cannot verify the model’s ability to simulate futures prices.

But, the mean of a conditional price distribution is a price expectation based on available

information, and coincides with a futures price in an efficient market (assuming no basis risk).

Hence, at each initial state, the averages of December and May conditional prices over the

10,000 simulations are comparable to prices of futures contracts with the same maturity dates.  In

the model, each initial state represents a unique set of available information at the time

expectations are formed, so that means of conditional expected prices can be regarded as

functions of state variables.

The means of conditional expected December and May prices (hereafter, futures prices)

are plotted against their conditioning variable, February availability in Figure 9.  In February, the
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May futures price represents the expected value of the current year’s crop, and the December

futures price is the expected value of the new crop.  The two prices cross at availability of about

11.1 billion bushels.  If stocks are large in February, the stored crop is priced below the new

crop, encouraging current consumption and discouraging production.

The relationships between state variables and futures expected prices are formalized by

the collocation method, analogous to the spot price functions.  Specifically, denoting DFP and

MFP as December and May futures prices, respectively, both futures price functions are

interpolated with cubic b-splines.

To obtain the frequency distributions for states over time, the model is again simulated

for 10,000 “years,” where states are realized endogenously.  This procedure is identical to the

long-run simulation for monthly spot prices and storage in Case 6, but also includes the

interpolated futures price functions to generate a series of December and May futures prices.

Hence, once the state is realized in a given month, DFP[⋅] and MFP[⋅] are evaluated to determine

futures prices, in addition to other current endogenous variables.

Distributions of simulated monthly December and May futures prices are illustrated in

Figures 10 and 11.  The distributions of prices in the maturity months are plotted with circles.

Since the futures price in maturity months coincides with the spot price under rational

expectations, the distributions at maturity are for the simulated spot prices in December and

May, respectively.  The overall pattern through the lifetime of each contract resembles their

observed counterpart in Figures 3 and 4.  Namely, at the early stages of the contract, the price

distributions are centered, and the spread widens as maturity approaches.  The anomalous

distributions in both figures are for October, which have a larger probability mass on price levels

higher than reality.
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Tables 7 and 8 report statistics of simulated December and May futures prices,

respectively, along with their sample counterparts.  The observed December futures prices

averaged $2.57 per bushel one year prior to maturity, increase throughout spring, and then

decline as maturity draws closer.  June prices, for example, are on average 15 cents per bushel

higher than at maturity, which as discussed earlier, appears to be inconsistent with an efficient

market.  The simulated means, in contrast, do not exhibit any trend, except the anomalous spikes

in September and October.  Standard deviations of observed December futures price are small in

the early months of the contract, and the variability increases towards maturity, where the

standard deviation at maturity is nearly three times as large than a year earlier.  The seasonal

increase is replicated in the simulated result, if September and October are ignored.  The

simulated variability at maturity is twice as large as the variability at a year prior.

The May futures price in the sample is about $2.80 per bushel, on average, a year prior to

maturity, and declines to about $2.70 at harvest.  The mean price level recovers after harvest to a

high at maturity.  Again, the seasonal pattern of the sample means seems to be inconsistent with

an efficient market.  The simulated means, although approximately six cents per bushel higher

than the observed levels a year prior to maturity, maintain that level until maturity, again

ignoring the anomalies in September and October.  At maturity, the simulated and observed price

levels are similar.

The observed variability of May futures contract remains low and increases after harvest

until at maturity it is nearly double the prior year’s standard deviation.  Simulated variability

follows the sample pattern, when prices in September and October are ignored, although the

magnitude of the increase is not fully reproduced.
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If September and October are ignored, the simulated futures prices are plausible

representation of futures prices in an efficient market, exhibiting a time-to-maturity effect.23

Moreover, the simulated futures prices replicate positive skewness indicated by observed futures

prices.

Concluding Remarks

This paper approaches model building from a viewpoint that parameters of price

distributions should be consistent with, and identifiable from, a structural model.  Hence, a

rational expectations commodity storage model was applied to the U.S. corn market, recognizing

it as a potentially valuable framework for commodity price analysis.  The model, calibrated to

the 1989/90-1997/98 period, generates intra- and inter-year price series similar to those faced by

market participants during the sample period, and the simulated long-run distributions of

monthly prices are comparable to those estimated from the sample.

Consistent with the sample, the season-high prices occur in May and the season-low in

November.  Price variability is the smallest in November and highest during the growing season

(May through August).  Simulated December and May futures price distributions exhibit a time-

to-maturity effect similar to those estimated from the sample period.  Nonetheless, the

distributions place some (small) probability mass on events outside the observed range during

the 1989/90 to 1997/98 time-frame.  The model solutions allow for various seasonal patterns,

including unlikely ones, and the results are robust with respect to changes in parameter values.

23 The likely factor causing the anomalies in the September and October distributions is the
discretized specification of states regarding harvest timing.  Despite careful calibration, it places
a larger probability mass than in reality on those expected harvest proportions that implies high
prices.
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 Overall, applications of a rational expectations commodity storage framework can be a

useful tool to examine long-run implications of price behavior.  Some limitations of the

approach, however, need to be mentioned.  A standard competitive storage model cannot fully

replicate the observed seasonal price pattern, particularly the seasonal decline (or price

backwardation) from May until harvest.  The relationship between prices in adjacent periods is

defined by the non-arbitrage condition, implying that expected prices appreciate by the carrying

cost.  In a standard model that assumes a constant physical storage cost, the only possible cause

of price backwardation is stock-outs.  In reality, an aggregate stock-out has never occurred for

corn, but price backwardation occurs in most years.  Because our application aims to replicate

the observed market, stock-outs are not used as an explanation for price behavior.  Instead,

backwardation is modeled by including “convenience yield” as a component of the carrying cost,

which encourages storage.  Although its existence is controversial, this term can be viewed as a

risk premium required by risk-averse storers.  The specification is thus equivalent to relaxing the

assumption of risk-neutrality.  Alternatively, it represents the benefit of an implicit option value

of the stocks.  As inventories decline, the benefit increases, since the holders of inventory can

meet unexpected demands.

A model, no matter how complex, is an abstraction from the reality.  By including six

state variables, the model generates seasonal probability distributions of prices that are

comparable to those estimated from a short sample.  But even in this case, the time-series

properties of the simulated prices differ somewhat from the observed monthly prices.  So many

factors evidently combine to affect prices in reality that most of them cannot be disentangled

from noise.  Limited though the model may be, its complexity cannot be easily enhanced because
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of the “curse of dimensionality;” computational time increases almost exponentially as state

variables are added.

Yet, the virtue of the approach is that both simulated cash and futures prices are

consistent with the data and conform to conceptual expectations.  For example, when the

available supply is larger, the cash price is relatively low compared to the futures price, which

encourages current consumption.  The simulations, therefore, permit analysis of long-run impacts

of economic decisions such as marketing or risk management practices.  In such analyses, it

should be noted that the framework cannot address basis risk because the basis always converges

under rational expectations.  Moreover, the rational expectations framework implies efficient

markets—prices reflect all available information at a given point in time.  Consequently, the

model is incapable of examining hypotheses related to market inefficiency.
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Table 1.  Simulated Mean Outcomes Under Certainty (Case 1)a

Price (P) Storage (s) Consumption (q)
Month $/bu mil. bu. mil. bu.

January 2.53 5898 741
(2.56) (745)

February 2.58 5158 740
(2.60) (4740)

March 2.63 4516 641
(2.69)

April 2.68 3879 637
(2.74) (644)

May 2.73 3247 632
(2.77) (2812)

June 2.69 2730 517
(2.72)

July 2.64 2215 515
(2.65) (527)

August 2.58 1700 515
(2.57) (1234)

September 2.46 1826 871
(2.47)

October 2.39 5576 870
(2.40) (876)

November 2.44 7381 867
(2.46) (6972)

December 2.48 6639 742
(2.51)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 2.  Simulated Outcomes With Uncertain Crop Size (Case 2)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

January 2.59 2.51 0.52 7.43 1.55 6422 6415 926 9339 3297 741 743 35 838 566
(2.56) (2.49) (0.44) (3.53) (2.07) (745) (757) (60) (831) (650)

February 2.64 2.56 0.52 7.51 1.60 5682 5673 893 8504 2730 740 742 34 835 567
(2.60) (2.58) (0.48) (3.71) (2.05) (4740) (4789) (631) (5678) (3800)

March 2.69 2.61 0.52 7.58 1.64 5041 5031 863 7782 2238 641 643 29 722 492
(2.69) (2.59) (0.51) (3.92) (2.16)

April 2.74 2.66 0.53 7.66 1.68 4404 4392 835 7066 1748 637 638 29 716 490
(2.74) (2.50) (0.67) (4.47) (2.23) (644) (657) (54) (727) (547)

May 2.80 2.69 0.70 10.23 1.32 3771 3758 808 6418 1240 633 634 37 753 454
(2.77) (2.51) (0.80) (4.86) (2.20) (2812) (2843) (587) (3709) (1718)

June 2.77 2.64 0.70 8.10 1.32 3253 3234 788 5889 822 518 520 30 618 393
(2.72) (2.59) (0.78) (4.74) (2.09)

July 2.71 2.59 0.69 9.56 1.29 2737 2719 768 5344 404 516 518 30 616 373
(2.65) (2.34) (0.80) (4.70) (2.16) (527) (533) (54) (619) (432)

August 2.66 2.52 0.71 7.47 1.29 2221 2205 751 4799 226 516 517 31 612 395
(2.57) (2.45) (0.76) (4.48) (1.86) (1234) (1308) (490) (2113) (426)

September 2.53 2.43 0.58 6.56 1.32 2347 2329 716 4759 465 871 874 46 1018 681
(2.47) (2.35) (0.42) (3.39) (2.08)

October 2.44 2.37 0.48 5.41 1.36 6099 6085 818 9143 3662 871 872 40 1002 709
(2.40) (2.27) (0.40) (3.12) (1.92) (876) (891) (69) (952) (780)

November 2.50 2.42 0.51 7.29 1.47 7905 7901 996 11016 4429 867 869 42 984 659
(2.46) (2.41) (0.38) (3.22) (2.02) (6972) (6940) (724) (8080) (5937)

December 2.54 2.46 0.51 7.35 1.51 7163 7158 961 10176 3863 742 744 35 840 566
(2.51) (2.42) (0.40) (3.36) (2.06)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 2.  (Continued)a

Crop Estimate (H), mil. bu. Harvest (h), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

April 8291 8288 615 10511 6034

May 8291 8288 615 10511 6034
(8649) (8575) (619) (9840) (7850)

June 8290 8281 662 10475 5855
(8543) (8500) (634) (9840) (7850)

July 8291 8284 710 10781 5442
(8386) (8275) (747) (9700) (7450)

August 8290 8296 821 11120 4999
(8234) (8122) (775) (9276) (7348)

September 8290 8297 836 11181 5124 996 997 100 1344 616
(8210) (8118) (838) (9268) (7229) (1107) (864) (696) (2862) (552)

October 8294 8298 863 11492 5115 4623 4625 481 6405 2851
(8257) (8022) (966) (9602) (6962) (4566) (4404) (1259) (6073) (2534)

November 8292 8302 903 11648 4720 2673 2673 396 4123 1229
(8294) (7934) (1235) (10051) (6338) (2720) (2856) (1404) (4850) (490)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 3.  Simulated Outcomes With Uncertain Demand and Crop Size (Case 3)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

January 2.71 2.62 0.57 6.96 1.52 6245 6209 935 9485 3408 738 737 71 1019 453
(2.56) (2.49) (0.44) (3.53) (2.07) (745) (757) (60) (831) (650)

February 2.76 2.67 0.58 7.18 1.56 5508 5473 902 8702 2781 736 735 73 1045 452
(2.60) (2.58) (0.48) (3.71) (2.05) (4740) (4789) (631) (5678) (3800)

March 2.81 2.72 0.58 7.74 1.57 4870 4834 874 8018 2242 639 638 69 912 420
(2.69) (2.59) (0.51) (3.92) (2.16)

April 2.86 2.78 0.59 7.70 1.60 4232 4199 846 7373 1735 638 637 77 912 365
(2.74) (2.50) (0.67) (4.47) (2.23) (644) (657) (54) (727) (547)

May 2.93 2.79 0.78 9.30 1.42 3593 3553 821 6753 1292 638 637 84 965 304
(2.77) (2.51) (0.80) (4.86) (2.20) (2812) (2843) (587) (3709) (1718)

June 2.91 2.76 0.79 10.32 1.32 3075 3031 800 6232 843 519 519 52 746 339
(2.72) (2.59) (0.78) (4.74) (2.09)

July 2.85 2.70 0.76 9.91 1.35 2557 2514 781 5690 367 518 518 54 748 319
(2.65) (2.34) (0.80) (4.70) (2.16) (527) (533) (54) (619) (432)

August 2.79 2.63 0.79 10.52 1.30 2040 2000 762 5124 75 517 517 54 716 319
(2.57) (2.45) (0.76) (4.48) (1.86) (1234) (1308) (490) (2113) (426)

September 2.64 2.53 0.63 7.61 1.33 2169 2130 731 4990 340 867 866 98 1291 490
(2.47) (2.35) (0.42) (3.39) (2.08)

October 2.54 2.47 0.52 5.84 1.31 5919 5881 831 9388 3366 867 865 98 1264 525
(2.40) (2.27) (0.40) (3.12) (1.92) (876) (891) (69) (952) (780)

November 2.60 2.52 0.56 7.21 1.45 7720 7689 1004 11138 4443 868 865 94 1303 539
(2.46) (2.41) (0.38) (3.22) (2.02) (6972) (6940) (724) (8080) (5937)

December 2.65 2.57 0.56 7.09 1.50 6983 6951 968 10235 3939 737 736 71 1034 481
(2.51) (2.42) (0.40) (3.36) (2.06)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 3.  (Continued)a

Crop Estimate (H), mil. bu. Harvest (h), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

May 8278 8273 605 10853 5839
(8649) (8575) (619) (9840) (7850)

June 8281 8285 650 10917 5888
(8543) (8500) (634) (9840) (7850)

July 8281 8280 696 10917 5679
(8386) (8275) (747) (9700) (7450)

August 8281 8283 804 11153 5205
(8234) (8122) (775) (9276) (7348)

September 8282 8282 822 11280 5023 995 995 99 1356 604
(8210) (8118) (838) (9268) (7229) (1091) (852) (686) (2824) (544)

October 8283 8286 854 11510 5009 4617 4619 476 6415 2792
(8257) (8022) (966) (9602) (6962) (4502) (4343) (1241) (5988) (2499)

November 8281 8278 902 11731 4815 2669 2667 400 4237 1119
(8294) (7934) (1235) (10051) (6338) (2682) (2816) (1385) (4782) (483)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 4.  Simulated Outcomes with Uncertain Harvest Timing, Demand, and Crop Size (Case 4)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

January 2.70 2.61 0.58 8.37 1.54 6406 6386 976 9644 3160 737 736 71 1011 440
(2.56) (2.49) (0.44) (3.53) (2.07) (745) (757) (60) (831) (650)

February 2.76 2.67 0.59 8.25 1.59 5669 5646 941 8739 2663 737 735 75 1007 463
(2.60) (2.58) (0.48) (3.71) (2.05) (4740) (4789) (631) (5678) (3800)

March 2.81 2.72 0.59 8.65 1.62 5030 5008 911 8025 2124 640 638 70 890 389
(2.69) (2.59) (0.51) (3.92) (2.16)

April 2.86 2.77 0.60 8.71 1.65 4392 4370 883 7355 1667 638 636 76 947 375
(2.74) (2.50) (0.67) (4.47) (2.23) (644) (657) (54) (727) (547)

May 2.93 2.78 0.80 11.76 1.46 3753 3725 857 6586 1162 639 637 84 945 349
(2.77) (2.51) (0.80) (4.86) (2.20) (2812) (2843) (587) (3709) (1718)

June 2.91 2.76 0.80 11.81 1.39 3235 3203 835 5978 789 519 517 52 714 321
(2.72) (2.59) (0.78) (4.74) (2.09)

July 2.86 2.70 0.78 11.34 1.39 2717 2680 815 5446 330 517 516 55 740 320
(2.65) (2.34) (0.80) (4.70) (2.16) (527) (533) (54) (619) (432)

August 2.81 2.64 0.82 11.10 1.32 2201 2169 795 4980 182 516 515 53 712 302
(2.57) (2.45) (0.76) (4.48) (1.86) (1234) (1308) (490) (2113) (426)

September 2.66 2.52 0.78 10.15 1.04 2447 2388 936 6420 59 869 867 103 1262 497
(2.47) (2.35) (0.42) (3.39) (2.08)

October 2.57 2.45 0.68 10.51 1.19 6141 6103 1488 11015 1623 868 866 105 1297 527
(2.40) (2.27) (0.40) (3.12) (1.92) (876) (891) (69) (952) (780)

November 2.60 2.51 0.57 7.77 1.49 7880 7860 1045 11192 4355 869 868 94 1249 520
(2.46) (2.41) (0.38) (3.22) (2.02) (6972) (6940) (724) (8080) (5937)

December 2.65 2.56 0.58 7.88 1.50 7143 7124 1010 10442 3782 737 736 71 1067 481
(2.51) (2.42) (0.40) (3.36) (2.06)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 4.  (Continued)a

Crop Estimate (H), mil. bu. Harvest (h), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

April 8294 8301 618 10737 5992

May 8294 8301 618 10737 5992
(8649) (8575) (619) (9840) (7850)

June 8290 8292 661 11053 5565
(8543) (8500) (634) (9840) (7850)

July 8288 8292 711 11484 5225
(8386) (8275) (747) (9700) (7450)

August 8284 8290 821 11583 5041
(8234) (8122) (775) (9276) (7348)

September 8284 8283 836 11531 5075 1114 986 580 4245 123
(8210) (8118) (838) (9268) (7229) (1091) (852) (686) (2824) (544)

October 8281 8281 865 11690 5125 4562 4554 1216 8355 1572
(8257) (8022) (966) (9602) (6962) (4502) (4343) (1241) (5988) (2499)

November 8279 8281 911 11707 4813 2609 2555 1302 6893 0
(8294) (7934) (1235) (10051) (6338) (2682) (2816) (1385) (4782) (483)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 5.  Simulated Outcomes with Endogenous Supply and Uncertain Harvest Timing, Demand, and Crop Size (Case 5)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

January 2.64 2.61 0.36 5.20 1.63 6411 6394 664 9221 3966 739 738 66 971 518
(2.56) (2.49) (0.44) (3.53) (2.07) (745) (757) (60) (831) (650)

February 2.69 2.66 0.37 5.17 1.65 5674 5655 643 8479 3352 737 737 68 1010 449
(2.60) (2.58) (0.48) (3.71) (2.05) (4740) (4789) (631) (5678) (3800) (745) (757) (60) (831) (650)

March 2.75 2.71 0.37 5.35 1.69 5033 5020 625 7712 2780 641 640 66 883 410
(2.69) (2.59) (0.51) (3.92) (2.16) (644) (657) (54) (727) (547)

April 2.80 2.76 0.38 5.51 1.75 4393 4380 608 7035 2255 640 639 73 941 381
(2.74) (2.50) (0.67) (4.47) (2.23) (644) (657) (54) (727) (547)

May 2.82 2.83 0.29 4.94 1.99 3755 3745 597 6394 1593 639 638 76 925 336
(2.77) (2.51) (0.80) (4.86) (2.20) (2812) (2843) (587) (3709) (1718) (644) (657) (54) (727) (547)

June 2.77 2.74 0.33 4.73 1.83 3233 3223 586 5819 1105 522 522 45 703 354
(2.72) (2.59) (0.78) (4.74) (2.09) (527) (533) (54) (619) (432)

July 2.72 2.69 0.36 5.20 1.78 2713 2701 575 5205 634 520 520 48 710 343
(2.65) (2.34) (0.80) (4.70) (2.16) (527) (533) (54) (619) (432)

August 2.68 2.63 0.44 5.68 1.61 2194 2178 537 4670 237 519 519 47 727 339
(2.57) (2.45) (0.76) (4.48) (1.86) (1234) (1308) (490) (2113) (426) (527) (533) (54) (619) (432)

September 2.55 2.49 0.49 6.53 1.13 2466 2402 747 6261 369 872 871 94 1240 521
(2.47) (2.35) (0.42) (3.39) (2.08) (876) (891) (69) (952) (780)

October 2.49 2.41 0.49 9.07 1.26 6172 6192 1318 10954 2074 872 872 98 1245 469
(2.40) (2.27) (0.40) (3.12) (1.92) (876) (891) (69) (952) (780)

November 2.54 2.51 0.35 4.90 1.53 7890 7877 707 10898 5302 870 869 89 1242 523
(2.46) (2.41) (0.38) (3.22) (2.02) (6972) (6940) (724) (8080) (5937) (876) (891) (69) (952) (780)

December 2.59 2.56 0.36 5.11 1.58 7150 7132 685 10062 4600 740 739 66 999 521
(2.51) (2.42) (0.40) (3.36) (2.06) (745) (757) (60) (831) (650)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.



50

Table 5.  (Continued)a

Crop Estimate (H), mil. bu. Harvest (h), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

May 8307 8308 122 8769 7818
(8649) (8575) (619) (9840) (7850)

June 8304 8300 264 9267 7308
(8543) (8500) (634) (9840) (7850)

July 8306 8306 376 9917 6944
(8386) (8275) (747) (9700) (7450)

August 8304 8300 549 10362 6193
(8234) (8122) (775) (9276) (7348)

September 8306 8299 573 10520 6162 1144 989 548 3817 490
(8210) (8118) (838) (9268) (7229) (1091) (852) (686) (2824) (544)

October 8306 8296 615 10932 6124 4578 4598 1179 7899 1742
(8257) (8022) (966) (9602) (6962) (4502) (4343) (1241) (5988) (2499)

November 8302 8298 672 11023 5773 2588 2550 1278 6763 0
(8294) (7934) (1235) (10051) (6338) (2682) (2816) (1385) (4782) (483)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 6.  Simulated Outcomes with Endogenous Supply, Uncertain Production Cost, Harvest Timing, Demand, and Crop Sizea

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

January 2.67 2.59 0.51 8.30 1.57 6428 6422 865 9453 3187 739 739 70 1051 462
(2.56) (2.49) (0.44) (3.53) (2.07) (745) (757) (60) (831) (650)

February 2.72 2.64 0.51 8.34 1.59 5691 5687 836 8684 2617 737 736 71 992 474
(2.60) (2.58) (0.48) (3.71) (2.05) (4740) (4789) (631) (5678) (3800) (745) (757) (60) (831) (650)

March 2.77 2.69 0.52 8.53 1.64 5052 5048 811 7977 2113 639 638 68 910 389
(2.69) (2.59) (0.51) (3.92) (2.16) (644) (657) (54) (727) (547)

April 2.83 2.75 0.53 8.78 1.66 4412 4401 788 7333 1608 640 638 76 921 315
(2.74) (2.50) (0.67) (4.47) (2.23) (644) (657) (54) (727) (547)

May 2.87 2.72 0.62 8.31 1.54 3772 3764 772 6658 1137 639 638 83 1039 344
(2.77) (2.51) (0.80) (4.86) (2.20) (2812) (2843) (587) (3709) (1718) (644) (657) (54) (727) (547)

June 2.84 2.73 0.63 9.18 1.54 3251 3241 758 6072 687 522 520 49 745 345
(2.72) (2.59) (0.78) (4.74) (2.09) (527) (533) (54) (619) (432)

July 2.79 2.67 0.63 9.86 1.45 2732 2718 744 5530 323 519 517 53 721 341
(2.65) (2.34) (0.80) (4.70) (2.16) (527) (533) (54) (619) (432)

August 2.75 2.63 0.66 9.29 1.44 2215 2203 732 5035 135 517 517 52 700 321
(2.57) (2.45) (0.76) (4.48) (1.86) (1234) (1308) (490) (2113) (426) (527) (533) (54) (619) (432)

September 2.59 2.49 0.64 7.67 1.16 2489 2435 861 6048 84 873 871 100 1321 524
(2.47) (2.35) (0.42) (3.39) (2.08) (876) (891) (69) (952) (780)

October 2.51 2.41 0.59 6.94 1.22 6206 6198 1412 11125 1894 872 869 100 1261 537
(2.40) (2.27) (0.40) (3.12) (1.92) (876) (891) (69) (952) (780)

November 2.57 2.49 0.50 8.38 1.49 7907 7902 926 11116 4254 870 870 92 1184 566
(2.46) (2.41) (0.38) (3.22) (2.02) (6972) (6940) (724) (8080) (5937) (876) (891) (69) (952) (780)

December 2.62 2.54 0.50 8.34 1.53 7168 7161 895 10289 3730 739 739 69 1001 484
(2.51) (2.42) (0.40) (3.36) (2.06) (745) (757) (60) (831) (650)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.



52

Table 6.  (Continued)a

Crop Estimate (H), mil. bu. Harvest (h), mil. bu.
Month Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min.

April 8294 8300 632 10685 5562

May 8294 8300 632 10685 5562
(8649) (8575) (619) (9840) (7850)

June 8297 8304 674 10831 5403
(8543) (8500) (634) (9840) (7850)

July 8299 8307 723 11047 5013
(8386) (8275) (747) (9700) (7450)

August 8297 8297 830 11506 4825
(8234) (8122) (775) (9276) (7348)

September 8298 8296 846 11487 4875 1147 989 556 3947 385
(8210) (8118) (838) (9268) (7229) (1091) (852) (686) (2824) (544)

October 8296 8301 876 11928 4731 4589 4605 1219 8546 1565
(8257) (8022) (966) (9602) (6962) (4502) (4343) (1241) (5988) (2499)

November 8300 8304 922 11827 4771 2571 2492 1303 6923 0
(8294) (7934) (1235) (10051) (6338) (2682) (2816) (1385) (4782) (483)

a Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 7.  Simulated December Futures Pricesa

Month Mean Median Std. Dev. Max. Min.

December 2.60 2.59 0.24 3.44 1.88
(2.57) (2.54) (0.14) (2.88) (2.43)

January 2.61 2.59 0.24 3.44 1.86
(2.60) (2.57) (0.16) (2.92) (2.42)

February 2.60 2.59 0.24 3.43 1.85
(2.65) (2.63) (0.20) (3.07) (2.41)

March 2.61 2.59 0.24 3.44 1.86
(2.69) (2.64) (0.22) (3.13) (2.43)

April 2.61 2.60 0.25 3.45 1.87
(2.70) (2.62) (0.26) (3.27) (2.46)

May 2.61 2.56 0.36 4.42 1.65
(2.69) (2.62) (0.34) (3.48) (2.38)

June 2.61 2.56 0.37 5.27 1.63
(2.71) (2.70) (0.35) (3.45) (2.29)

July 2.60 2.56 0.39 4.94 1.62
(2.65) (2.51) (0.43) (3.60) (2.25)

August 2.60 2.54 0.42 5.40 1.57
(2.57) (2.48) (0.35) (3.29) (2.20)

September 2.73 2.64 0.55 8.09 1.57
(2.57) (2.46) (0.38) (3.25) (2.21)

October 3.46 3.29 0.91 12.40 1.69
(2.54) (2.48) (0.37) (3.18) (2.09)

November 2.60 2.53 0.49 8.58 1.56
(2.55) (2.55) (0.39) (3.29) (2.12)

December 2.60 2.53 0.49 8.30 1.49
(2.56) (2.56) (0.41) (3.35) (2.12)

a In $/bu.  Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Table 8.  Simulated May Futures Contract Pricesa

Month Mean Median Std. Dev. Max. Min.

May 2.86 2.83 0.28 4.25 2.07
(2.79) (2.73) (0.33) (3.55) (2.49)

June 2.85 2.83 0.29 4.93 2.05
(2.81) (2.80) (0.34) (3.54) (2.42)

July 2.86 2.83 0.30 4.65 2.05
(2.76) (2.63) (0.41) (3.69) (2.39)

August 2.85 2.81 0.32 4.96 2.00
(2.70) (2.62) (0.34) (3.42) (2.35)

September 2.95 2.89 0.42 7.19 1.99
(2.71) (2.59) (0.37) (3.39) (2.36)

October 3.50 3.37 0.70 10.66 2.10
(2.67) (2.62) (0.35) (3.25) (2.24)

November 2.85 2.80 0.37 7.57 1.98
(2.69) (2.67) (0.35) (3.35) (2.28)

December 2.85 2.80 0.37 7.60 1.95
(2.70) (2.63) (0.39) (3.50) (2.28)

January 2.85 2.80 0.37 7.42 1.93
(2.73) (2.65) (0.45) (3.67) (2.26)

February 2.85 2.80 0.38 7.31 1.91
(2.76) (2.75) (0.46) (3.73) (2.21)

March 2.85 2.80 0.38 7.21 1.94
(2.80) (2.74) (0.49) (3.84) (2.22)

April 2.86 2.81 0.38 7.33 1.95
(2.81) (2.56) (0.66) (4.36) (2.30)

May 2.85 2.71 0.62 6.90 1.35
(2.84) (2.59) (0.86) (4.94) (2.25)

a In $/bu.  Numbers in parentheses are observed values for the period 1989/90 - 1997/98.
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Figure 1.  Monthly Cash Prices of No. 2, Yellow Corn, Central Illinois.
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Figure 2.  Estimated Monthly Price Distributions for Corn, 1989-90/1997-98.
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Figure 3.  Estimated Distributions of Prices of December Futures Contract, by Month.
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Figure 4.  Estimated Distributions of Prices of May Futures, by Month.
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Figure 5.  Equilibrium Price Function under Certainty (Case 1).
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Figure 6.  Equilibrium Storage under Certainty (Case 1).
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Figure 7. .Harvest-Time Demand and Supply Functions (Case 6).
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Figure 8.  Equilibrium Planting Function (Case 6).
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Figure 9.  Simulated Prices under Uncertain Crop Size (Case 2).
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Figure 10.  Simulated Storage (s), Consumption (q), and Availability (A)
                                 under Uncertain Crop Size (Case 2).
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Figure 11.  Distributions of Simulated Monthly Prices (Case 6).
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Figure 11  (Continued)
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Figure 13.  Monthly Distributions of December Futures Price.
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Figure 14.  Monthly Distributions of May Futures Price.
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Appendix 1.  Numerical Model

The discretization explained in the text implies that the original functional equation

problem (8a)–(8d) is replaced by a finite-dimensional problem.  Corresponding to equation

(8a) is a set of monthly arbitrage equations:
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where right primes (´) denote next month values.

Like (8a), each of the statements in (10a) requires that the current price equals the

discounted expected price in the following month less carrying cost.  Statements differ by

month because there are different state variables.  In post-harvest, pre-planting months

(November−March), the only unknown future states are the demand shocks.  Hence, the

expectations are taken with respect to demand shocks in the following month, i′ = 1, …, I′.

In April, the expectation is calculated with respect to possible states in May, which depend

on demand shocks and planted crop size, and so forth.
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Parallel to equation (8b), equation (8b)′ requires the monthly price function

approximants to equal the price on the demand function, and this relationship must hold

exactly at the collocation nodes, m
jA , j = 1, …, N.
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Equation (8c), which is the equilibrium condition for planted crop size, can be re-

stated as:
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The left-hand side is the planted crop size as a function of April availability; the right-hand

side is the supply function evaluated at the expected price at harvest, associated with the

planted crop size.

Finally, the expected price and planting functions must be defined so that the

function approximants are exact at all collocation nodes:
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The expected prices P̂  in equation (8d)′ are determined according to equation (8d); they

are the expected harvest price, conditional on the planted crop size, based on the given

transition probabilities for states and the monthly price functions from equation (8a).
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Appendix 2.
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Table A1.  Mean Simulated Outcomes, by Annualized Interest Rate Parameter (R)a,b

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu. Crop Estimate (H), mil.bu. Harvest (h), mil. bu.
Month R=0.05 R=0.1c R=0.15 R=0.05 R=0.1c R=0.15 R=0.05 R=0.1c R=0.15 R=0.05 R=0.1c R=0.15 R=0.05 R=0.1c R=0.15

January 2.76 2.67 2.71 6839 6428 5956 732 739 736
(0.47) (0.51) (0.56) (934) (865) (798) (69) (70) (70)

February 2.80 2.72 2.78 6105 5691 5221 733 737 736
(0.48) (0.51) (0.57) (906) (836) (767) (70) (71) (71)

March 2.84 2.77 2.84 5469 5052 4584 637 639 637
(0.48) (0.52) (0.58) (883) (811) (739) (68) (68) (68)

April 2.88 2.83 2.91 4833 4412 3949 636 640 635 8230 8294 8261
(0.48) (0.53) (0.59) (859) (788) (714) (76) (76) (75) (673) (632) (646)

May 2.96 2.87 2.98 4201 3772 3314 632 639 635 8230 8294 8261
(0.59) (0.62) (0.72) (845) (772) (696) (81) (83) (82) (673) (632) (646)

June 2.93 2.84 2.95 3684 3251 2798 517 522 516 8232 8297 8263
(0.60) (0.63) (0.74) (831) (758) (681) (48) (49) (51) (718) (674) (690)

July 2.88 2.79 2.90 3169 2732 2283 515 519 515 8233 8299 8263
(0.58) (0.63) (0.74) (819) (744) (667) (50) (53) (54) (767) (723) (738)

August 2.84 2.75 2.84 2656 2215 1769 513 517 515 8227 8297 8269
(0.63) (0.66) (0.80) (807) (732) (654) (49) (52) (53) (866) (830) (844)

September 2.69 2.59 2.64 2937 2489 2039 862 873 871 8226 8298 8268 1144 1147 1141
(0.60) (0.64) (0.75) (933) (861) (794) (96) (100) (103) (883) (846) (858) (562) (556) (559)

October 2.62 2.51 2.53 6620 6206 5738 861 872 870 8225 8296 8267 4544 4589 4569
(0.55) (0.59) (0.67) (1458) (1412) (1362) (98) (100) (105) (913) (876) (885) (1229) (1219) (1220)

November 2.67 2.57 2.58 8303 7907 7431 863 870 869 8226 8300 8264 2547 2571 2562
(0.47) (0.50) (0.54) (990) (926) (863) (92) (92) (93) (958) (922) (926) (1304) (1303) (1288)

December 2.71 2.62 2.65 7571 7168 6692 732 739 739
(0.47) (0.50) (0.55) (962) (895) (831) (67) (69) (70)

a Numbers in parentheses are standard deviations. b The paramater in the model is r = R/12. c Base model, from Table 6.



70

Table A2.  Mean Simulated Outcomes, by Storage Cost Parameter (k)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu. Crop Estimate (H), mil.bu. Harvest (h), mil. bu.
Month k=0.02 k=0.03b k=0.04 k=0.02 k=0.03b k=0.04 k=0.02 k=0.03b k=0.04 k=0.02 k=0.03b k=0.04 k=0.02 k=0.03b k=0.04

January 2.64 2.67 2.71 7040 6428 5981 740 739 736
(0.44) (0.51) (0.57) (971) (865) (800) (69) (70) (71)

February 2.69 2.72 2.78 6301 5691 5246 740 737 735
(0.44) (0.51) (0.58) (946) (836) (767) (70) (71) (73)

March 2.73 2.77 2.84 5658 5052 4609 643 639 637
(0.45) (0.52) (0.58) (923) (811) (739) (68) (68) (69)

April 2.77 2.83 2.90 5016 4412 3974 642 640 635 8314 8294 8283
(0.45) (0.53) (0.59) (902) (788) (712) (74) (76) (76) (698) (632) (651)

May 2.81 2.87 2.96 4374 3772 3338 642 639 636 8314 8294 8283
(0.54) (0.62) (0.72) (886) (772) (695) (82) (83) (83) (698) (632) (651)

June 2.78 2.84 2.93 3851 3251 2820 523 522 517 8314 8297 8282
(0.56) (0.63) (0.75) (873) (758) (680) (48) (49) (51) (737) (674) (695)

July 2.74 2.79 2.88 3330 2732 2304 521 519 516 8311 8299 8285
(0.55) (0.63) (0.74) (860) (744) (667) (51) (53) (54) (783) (723) (746)

August 2.70 2.75 2.83 2811 2215 1790 519 517 514 8318 8297 8281
(0.57) (0.66) (0.79) (849) (732) (655) (50) (52) (54) (885) (830) (856)

September 2.58 2.59 2.63 3081 2489 2063 872 873 873 8318 8298 8279 1142 1147 1145
(0.55) (0.64) (0.76) (959) (861) (799) (96) (100) (103) (897) (846) (875) (557) (556) (560)

October 2.52 2.51 2.52 6797 6206 5775 869 872 874 8316 8296 8279 4587 4589 4586
(0.51) (0.59) (0.69) (1484) (1412) (1349) (98) (100) (105) (921) (876) (903) (1240) (1219) (1227)

November 2.56 2.57 2.59 8520 7907 7455 870 870 869 8316 8300 8274 2595 2571 2550
(0.43) (0.50) (0.56) (1025) (926) (867) (91) (92) (94) (962) (922) (944) (1301) (1303) (1286)

December 2.60 2.62 2.65 7781 7168 6717 739 739 738
(0.43) (0.50) (0.57) (998) (895) (834) (68) (69) (70)

a Numbers in parentheses are standard deviations. b Base model, from Table 6.
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Table A3.  Mean Simulated Outcomes, by Demand Elasticity Parameter (κ)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu. Crop Estimate (H), mil.bu. Harvest (h), mil. bu.
Month κ=-0.15 κ=-0.25b κ=-0.35 κ=-0.15 κ=-0.25b κ=-0.35 κ=-0.15 κ=-0.25b κ=-0.35 κ=-0.15 κ=-0.25b κ=-0.35 κ=-0.15 κ=-0.25b κ=-0.35

January 2.72 2.67 2.63 6722 6428 6326 740 739 739
(0.66) (0.51) (0.39) (882) (865) (818) (64) (70) (76)

February 2.77 2.72 2.68 5982 5691 5588 740 737 738
(0.66) (0.51) (0.39) (860) (836) (785) (65) (71) (79)

March 2.82 2.77 2.73 5341 5052 4947 641 639 641
(0.67) (0.52) (0.40) (841) (811) (758) (61) (68) (76)

April 2.88 2.83 2.78 4700 4412 4308 641 640 639 8317 8294 8290
(0.68) (0.53) (0.40) (822) (788) (732) (65) (76) (87) (615) (632) (654)

May 2.87 2.87 2.84 4058 3772 3668 642 639 640 8317 8294 8290
(0.67) (0.62) (0.54) (811) (772) (715) (68) (83) (97) (615) (632) (654)

June 2.85 2.84 2.81 3535 3251 3148 523 522 520 8317 8297 8290
(0.70) (0.63) (0.54) (802) (758) (699) (48) (49) (53) (663) (674) (693)

July 2.81 2.79 2.76 3013 2732 2631 522 519 517 8315 8299 8291
(0.71) (0.63) (0.53) (792) (744) (685) (50) (53) (56) (715) (723) (745)

August 2.78 2.75 2.71 2493 2215 2115 520 517 516 8319 8297 8293
(0.78) (0.66) (0.56) (783) (732) (673) (49) (52) (56) (823) (830) (849)

September 2.63 2.59 2.55 2772 2489 2393 873 873 873 8317 8298 8296 1151 1147 1151
(0.82) (0.64) (0.52) (906) (861) (820) (86) (100) (111) (840) (846) (865) (562) (556) (564)

October 2.56 2.51 2.46 6499 6206 6119 873 872 873 8315 8296 8297 4600 4589 4600
(0.79) (0.59) (0.46) (1423) (1412) (1371) (89) (100) (115) (869) (876) (889) (1218) (1219) (1215)

November 2.61 2.57 2.52 8201 7907 7804 871 870 871 8317 8300 8298 2574 2571 2556
(0.65) (0.50) (0.38) (930) (926) (886) (82) (92) (102) (912) (922) (930) (1286) (1303) (1278)

December 2.66 2.62 2.58 7462 7168 7065 739 739 739
(0.65) (0.50) (0.38) (905) (895) (852) (64) (69) (76)

a Numbers in parentheses are standard deviations. b Base model, from Table 6.
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Table A4.  Mean Simulated Outcomes, by Convenience Yield Elasticity Parameter (ξ)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu. Crop Estimate (H), mil.bu. Harvest (h), mil. bu.
Month ξ=-0.8 ξ=-1b ξ=-1.2 ξ=-0.8 ξ=-1b ξ=-1.2 ξ=-0.8 ξ=-1b ξ=-1.2 ξ=-0.8 ξ=-1b ξ=-1.2 ξ=-0.8 ξ=-1b ξ=-1.2

January 2.66 2.67 2.67 5827 6428 6985 739 739 737
(0.52) (0.51) (0.48) (832) (865) (872) (70) (70) (70)

February 2.71 2.72 2.73 5087 5691 6246 740 737 738
(0.53) (0.51) (0.49) (802) (836) (843) (71) (71) (71)

March 2.77 2.77 2.78 4445 5052 5606 643 639 640
(0.53) (0.52) (0.50) (776) (811) (819) (70) (68) (68)

April 2.82 2.83 2.83 3805 4412 4967 640 640 640 8301 8294 8297
(0.54) (0.53) (0.50) (751) (788) (796) (76) (76) (75) (665) (632) (669)

May 2.86 2.87 2.89 3165 3772 4327 640 639 640 8301 8294 8297
(0.64) (0.62) (0.61) (735) (772) (781) (83) (83) (82) (665) (632) (669)

June 2.84 2.84 2.85 2644 3251 3807 521 522 520 8301 8297 8295
(0.66) (0.63) (0.63) (720) (758) (769) (50) (49) (49) (705) (674) (711)

July 2.80 2.79 2.80 2125 2732 3289 519 519 518 8301 8299 8301
(0.65) (0.63) (0.61) (707) (744) (756) (53) (53) (52) (750) (723) (757)

August 2.75 2.75 2.75 1610 2215 2773 517 517 516 8303 8297 8297
(0.69) (0.66) (0.65) (692) (732) (745) (52) (52) (51) (851) (830) (855)

September 2.59 2.59 2.59 1878 2489 3046 873 873 872 8302 8298 8297 1141 1147 1146
(0.68) (0.64) (0.62) (821) (861) (872) (101) (100) (99) (866) (846) (871) (556) (556) (561)

October 2.51 2.51 2.51 5620 6206 6761 872 872 872 8303 8296 8299 4614 4589 4587
(0.63) (0.59) (0.56) (1387) (1412) (1403) (102) (100) (101) (896) (876) (900) (1234) (1219) (1230)

November 2.56 2.57 2.57 7306 7907 8460 872 870 870 8305 8300 8298 2558 2571 2571
(0.51) (0.50) (0.47) (893) (926) (930) (92) (92) (92) (939) (922) (942) (1293) (1303) (1286)

December 2.61 2.62 2.62 6566 7168 7722 740 739 739
(0.51) (0.50) (0.48) (863) (895) (900) (70) (69) (70)

a Numbers in parentheses are standard deviations. b Base model, from Table 6.
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Table A5  Mean Simulated Outcomes, by Supply Elasticity Parameter (η)a

Price (P), $/bu. Storage (s), mil. bu. Consumption (q), mil. bu. Crop Estimate (H), mil.bu. Harvest (h), mil. bu.
Month η=0.1 η=0.2b η=0.3 η=0.1 η=0.2b η=0.3 η=0.1 η=0.2b η=0.3 η=0.1 η=0.2b η=0.3 η=0.1 η=0.2b η=0.3

January 2.71 2.67 2.65 6441 6428 6432 740 739 738
(0.66) (0.51) (0.42) (1059) (865) (756) (74) (70) (67)

February 2.76 2.72 2.70 5704 5691 5695 737 737 737
(0.67) (0.51) (0.42) (1021) (836) (732) (76) (71) (69)

March 2.81 2.77 2.75 5063 5052 5053 641 639 642
(0.68) (0.52) (0.43) (988) (811) (712) (72) (68) (66)

April 2.87 2.83 2.80 4425 4412 4414 638 640 639 8296 8294 8298
(0.69) (0.53) (0.44) (958) (788) (692) (78) (76) (74) (902) (632) (497)

May 2.98 2.87 2.82 3788 3772 3774 638 639 640 8296 8294 8298
(0.95) (0.62) (0.45) (933) (772) (680) (87) (83) (79) (902) (632) (497)

June 2.94 2.84 2.79 3269 3251 3253 519 522 521 8295 8297 8298
(0.94) (0.63) (0.47) (913) (758) (670) (55) (49) (47) (931) (674) (551)

July 2.88 2.79 2.75 2751 2732 2733 517 519 520 8290 8299 8299
(0.90) (0.63) (0.48) (895) (744) (660) (57) (53) (50) (967) (723) (611)

August 2.83 2.75 2.71 2234 2215 2214 518 517 519 8293 8297 8301
(0.92) (0.66) (0.54) (877) (732) (651) (56) (52) (49) (1049) (830) (737)

September 2.65 2.59 2.56 2502 2489 2488 870 873 875 8294 8298 8304 1138 1147 1148
(0.81) (0.64) (0.56) (980) (861) (804) (105) (100) (97) (1063) (846) (753) (561) (556) (566)

October 2.55 2.51 2.49 6213 6206 6202 870 872 871 8292 8296 8303 4581 4589 4586
(0.72) (0.59) (0.53) (1509) (1412) (1359) (105) (100) (100) (1088) (876) (786) (1263) (1219) (1211)

November 2.60 2.57 2.54 7920 7907 7910 870 870 870 8290 8300 8303 2579 2571 2578
(0.65) (0.50) (0.41) (1136) (926) (808) (96) (92) (90) (1121) (922) (830) (1319) (1303) (1288)

December 2.66 2.62 2.59 7181 7168 7170 739 739 740
(0.66) (0.50) (0.41) (1097) (895) (782) (73) (69) (68)

a Numbers in parentheses are standard deviations. b Base model, from Table 6.




