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The Bioeconomics of Marine Sanctuaries 

Abstract 

The role of a marine sanctuary, where commercial fishing might be prohibited, 

is evaluated in two models; one where net biological growth is deterministic, 

and the other where net biological growth is stochastic. There is diffusion 

(migration) between the sanctuary and the fishing grounds based on the ratios 

of current stock size to carrying capacity in each area. Fishing is managed 

under a regime of regulated open access. In the deterministic model, it is 

possible to determine the steady-state equilibrium and to assess its local 

stability. In the stochastic model a steady state does not exist, but a stable 

joint distribution for the fish stock on the grounds and in the sanctuary is 

possible. The creation of a no-fishing marine sanctuary leads to higher 

population levels on the grounds and in the sanctuary, and appears to reduce 

the variation of the population in both areas. The higher population levels and 

reduced variation has an opportunity cost; foregone harvest from the 

sanctuary. 

Keywords:	 population dynamics, fishing, marine sanctuaries, regulated open 

access, diffusion. 
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The Bioeconomics of Marine Sanctuaries 

I. Introduction and Overview 

Marine sanctuaries have been established in many countries as a means 

of protecting endangered species or entire ecosystems. In the US, Title III of the 

Marine Protection, Research and Sanctuaries Act of 1972 established the 

National Marine Sanctuaries Program (NMSP). The goal of the program is to 

establish a system of sanctuaries that (1) provide enhanced resource protection 

through conservation and management, (2) facilitate scientific research, (3) 

enhance public awareness, understanding, and appreciation of the marine 

environment, and (4) promote the appropriate use of marine resources. 

There are currently twelve sanctuaries in the US system. Eleven of these 

appear to have been established for the primary purpose of resource 

conservation. The twelfth site protects the wreck of the USS Monitor, a Civil 

War vessel of historical significance. The sanctuaries, their size, and some of 

their key species are summarized in Table 1. 

The National Oceanic and Atmospheric Administration (NOAA) is 

charged with the management of the system, and has the power to impose 

additional regulations on fishing or other activities within a sanctuary. Some 

additional regulations have been placed on fishing within six of the marine 

sanctuaries, primarily to protect coral reefs and benthic habitat. A sanctuary 

system, however, has the potential to serve as a haven for species sought by 

commercial or sport fishers, and thus as a source, or inventory, of species that 

could replenish or recolonize areas that have been more intensively hanrested. 

• 

The purpose of this paper is to examine the role that a marine sanctuary 

might play when it is adjacent to an area supporting a commercial fishery 
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(called the "grounds"). A sanctuary may come under the same regulatory 

policies as imposed on the grounds. or it may be subject to additional 

regulations. up to and including a prohibition on fishing. In this paper it will 

be assumed that the grounds are managed as a regulated. open-access fishery. 

as described by Homans and Wilen (1997). The dynamics of the commercially 

harvested species is influenced by a diffusion process between the grounds and 

the sanctuary similar to that of the inshore/offshore fishery described in Clark 

(1990). The role of the sanctuary will be examined when net growth is 

deterministic and when it is stochastic. 

The rest of the paper is organized as follows. In the next section a 

general. deterministic model of sanctuary and grounds is constructed. 

Conditions for stability of the regulated. open-access equilibrium are 

presented. In Section III the deterministic model is modified to allow for 

stochastic net biological growth. The stochastic model will not possess a 

steady state. but may lead to a stable joint distribution for the commercial 

species on the grounds and in the sanctuary. This distribution will shift in 

phase space if the sanctuary is placed under more restrictive regulation. such 

as prohibition of fishing. 

In Section IV a numerical example is developed. The stability of 

equilibria in the deterministic model is easily analyzed. This analysis can 

indicate the neighborhood in phase space where a stable stochastic system will 

fluctuate. The fifth section recaps the major conclusions on the role of marine 

sanctuaries in both deterministic and stochastic environments. 

U. The Deterministic Model ­
Consider the situation where a single species is commercially harvested 

in two adjacent areas. Area One has recently been designated as a marine 
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sanctuary. Both areas are currently managed under a regime of regulated open 

access, although fishing in the sanctuary could be further restricted. 

In period t, let Xl,t denote the biomass of the commercial species in the 

sanctuary and X2.t the biomass of the same species on the grounds. With 

harvest in both areas, and diffusion between, we have a dynamical system that 

might be characterized by the difference equations 

XU +1 =Xu + FdXu) - D(Xu , X2.tl- <1>d Xu) 
(1)

X2.t+1 =X2.t + F2(X2,t) + D(Xu ,X2.t ) - <1>2 (X2,t) 

where File) and F2(e) are net growth functions, D(e) is a diffusion function, 

and Yl,t =<1>IlXl,t) and Y2.t =<1>2(X2,J are the policy functions used by the 

management authorities to detennine total allowable catch (TAC) in Areas One 

and 1\vo, respectively. The sequence of growth, diffusion and harvest is as 

follows. At the beginning of each period, net growth takes place based on the 

biomass levels in each area. This is followed by migration or diffusion, which 

will depend on biomass and canying capacity in both areas. The diffusion 

function has been arbitrarily defined as the net migration from the sanctuary 

to the grounds. If D(Xl,t,X2,J > 0, fish, on net, are leaving the sanctuary. If 

D(Xl.toX2.J < °fish, on net, are leaving the grounds. Lastly, harvest takes 

place, reducing biomass in both areas. 

In the model of regulated open access it is assumed that the TACs, as 

detennined by the policy functions Y1•t =<1>l(Xl.J and Y2.t =<1>2(X2,J, are binding. 

This implies that the actual level of harvest in each area will equal the TAC, 

which will also equal the level of harvest as defmed by the fishery production 
• 

function for each area. The fishery production function relates stock, effort 

and season duration to harvest in each period. The proquction functions are 
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denoted as Yl,t = H1(Xl,t, E 1.t, Tl,t) and Y2.t = H2(X2.t, E2.t, T2.J where Ei,t is the 

level of fishing effort committed to the ith area at the beginning of period t and 

Ti,t is the duration or season length in the ith area, i=l,2. When actual 

harvest in an area reaches its TAC, fishing stops, and the area is closed for the 

rest period. By equating (Pt(X1.J with H1(Xi,t,Ei,t,Tl,J we have a single equation 

in three unknowns and we can solve for season length as a function of stock 

and effort. This implicit relationship is written as 

Ti,t = <Pl(Xi,t,E1.J· 

Under regulated open access, fishers are thought to commit to a level of 

effort that "dissipates rent," driving net revenue to zero. Net revenue in the ith 

area in period t is given by the expression 

The first tenn on the right-hand-side (RHS) is revenue in period t from 

harvesting the TAC in area i, where p is the unit price for fish on the dock. 

Note, that the expression <Pl(e) has been substituted into the production 

functions for Ti,t. The second tenn is variable cost, VIEi,tTi,t, where VI > 0 and 

<Pl(e) has again been substituted for Ti,t. The third tenn is the fixed cost of the 

Ei,t units of effort fishing in the ith area, where f1 > O. Net revenue in the ith 

area is a function of only Xt.t and Ei,t. Setting 1ti,t = 0, we can solve for 

Ei,t = "'1(X1.J. 

The dynamics of the species in each area, the TACs, effort and season 

length can be simulated from (X1.O,X2.0) by the augmented system 

• 
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XU+l = Xu + FdXu) - D(XU ' X2.tl- (!>I (XU) 

X2.t+l = X2.t + F2(X2.tl + D(XU ,X2.tl- <1>2 (X2.tl 
YU = <l>dXu) 

Y2.t = <1>2 (X2.t ) 

EU = '1'1 (XU) (3) 

E2.t = '1'2 (X2.t ) 

T U = <PI (XU, 'I'dXu )) 

T 2.t = <P2 (X2.t , '1'2 (X2.tl) 

where the RHSs of all the expressions in (3) depend only on Xu and X2.t. 

Up to now we have made no assumptions about the functions Fi(e), D(e), 

and <l>i(e). If these functions are nonlinear, system (3) is capable of a rich set of 

dynamic behaviors, including convergence to one or more steady states, 

periodic cycles, and possibly deterministic chaos. System (3) is driven by the 

first two difference equations and the local stability of a steady state can be 

determined as follows. First, the steady state equilibria of the system can be 

found by searching for the pairs (Xl,X2) which satisfy 

Gl (Xl ,X2) = Fl(Xd - D(Xl ,X2) - <l>dXd = 0 
(4)

G2 (Xl ,X2) =F2(X2)+D(Xl,X2)-<I>2(X2) = 0 

For a particular steady state to be locally stable the characteristic roots of the 

matrix A must be less than one in absolute value or have real parts that are 

less than one in absolute value. The matrix A is defined by 

-
(5)
 

where 

5
 



au (Xl' X2) =1 + Fi (Xl) - aD(Xl ,X2)jaxl - <1>i (Xl)
 

al,2(Xl ,X2 ) = -aD(Xl ,X2)jaX2
 (6)
a2,tl Xl' X2) =aD(Xl ,X2)jaXl
 
a2.2 (Xl' X2) = 1 + F2(X2) + aD(Xl ,X2)jax2 - <1>2 (X2)
 

Defining ~ =al,Ile) + a2,2(e) and 'Y =al,1(e)a2.2(e) - a1,2(e)a2,1(e), the 

characteristic roots of A will be given by 

(7)
 

m. The Stochastic Model 

It is frequently the case that fish and shellfish populations exhibit 

significant fluctuations in recruitment as the result of stochastic processes in 

the marine environment. Marine sanctuaries might serve as a buffer against 

such processes. One way of modeling this stochasticity would be to 

premultiply the net growth functions by a random variable such as Zt,t+l, in the 

system below. 

XU+l =Xu + Zl.t+lFl (XU) - D(Xu ,X2,t) - <1>1 (XU) 
(8)

X2,t+l =X2,t + Z2,t+lF2(X2,t) + D(Xu ,X2,t) - <1>2 (X2,t) 

Depending on the size and proximity of our two areas, Zl,t+l and Z2,t+l may be 

highly correlated. System (8), and the augmented system of regulated open 

access, will not have a steady state, but may exhibit a stable joint distribution 

in (Xl,t,X2.J space. It is not likely that an analytic form for the joint 

distribution can be deduced from a knowledge of the distributions for Zt.t+lo but 

simulation of the stochastic system will permit the calculation of descriptive 
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statistics for the joint distribution, both with and without additional 

restrictions on fishing in the sanctuary. 

IV. A Numerical Example 

To illustrate the procedures for detennining steady state and stability in 

the detenninistic model and the joint distribution of (XI,t,X2,tJ in the 

stochastic model, we turn to a numerical example. We adopt the following 

functional forms: File) =rIXl,tO - XI,tlKd, F2(e) =r2X2,tO - X2,tlK2), 

D(e) = S(Xl,t/KI - X2,tlK2), <l>Ile) = CI + dlXl,t, <l>2(e) = C2 + d2X2,t, 

HI (e) = XI,t 0- e-QlEuTu), and H2 (e) =X2,t 0- e-Q2E2.tT2.t). 

The forms for FI(e) and F2(e) are logistic, where rl and r2 are positive 

intrinsic growth rates, and KI and K2 are positive carrying capacities. The 

diffusion function, with s > 0, presumes that there will be out-migration from 

the sanctuary if XI,tlKI > X2,tlK2, and in-migration if Xl,t/KI < X2,tlK2' This 

implies out-migration from the area with the higher ratio of stock to carrying 

capacity. 

The TAC policy rules, <l>t(e), presume a linear relationship between the 

TAC and Xt,t. The slope coefficient is presumably positive (dt > 0), while the 

intercept (Ct) might be positive, zero or negative. The form of the production 

functions, Ht(e), presumes that net growth is followed a process of continuous 

fishing for a season of length Tt,t, and that the stock, Xt,t, is subject to pure 

depletion dUring the season. 

Equating <l>t(e) with Ht(e) and solving for Tt,t yields 

(9)T t,t -- <Pt (Xt,t, Ei,t ) -- ( E1 JIn[ (1 d)XXt,t ]. ­
qt t,t - t t,t - Ct 
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The expression for net revenue is given by 

-qtEttTtt) E T fE (10)1ti,t = PX1.t (1 -e .. -VI 1,t 1.t - 1 i,t 

Substituting the (9) into (10), setting 1ti.t =0, and solving for Ei,t yields 

The augmented system takes the fonn 

Xl,t+l = Xl,t + rlXl,t (1- Xl,t/Kl ) - s(Xl,t/Kl - X 2,tlK2) - (Cl + dlXl.t )
 

X2.t+l = X2.t + r2X2,t (1- X 2,tlK2) + s(Xl.tlKl - X 2.tlK2) - (c2 + d2X2,t)
 

Yl,t = Cl + dlXl,t
 

Y2.t = c2 + d2X2,t
 

El,t = (p/fd(Cl + dlXl,t) - [vI!(qlfd] In[ Xl,t ]
(1- dl )Xl,t - Cl 

E2,t = (p/f2 )(c2 +d2X2.tl-[v2/(q2f2)]ln[ X2,t ]
(1- d2)X2.t - c2 

(12)[ JIn[T - 1 . Xl,t ]
l,t - qlEl,t (1- dl )Xl,t - Cl 

tT - [ 1 JIn[ X 2 . ]
2.t - q2E2.t (1- d2 )X2.t - c2 

If a steady state to system (12) exists it must satisfy 

-
The elements of the matrix A are 
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au = 1 + rl (1 - 2 X11KI ) - sjKI - dl 
al,2 =sjK2 (14) 
a2,1 =sjKI 

a2,2 =1+ r2 (1- 2X2 jK2 ) - sjK2 - d2 

With values for rl. r2. Klt K2. Clt C2. d lt d2. and s. it would be possible to 

numerically solve for the pairs (XltX2) which satisfy (13) and to check for local 

stability based on the elements in (14). With Xl and X2. and values for VI. v2. 

flo f2. qlt q2, and p. one could then solve for the steady-state values for Ylt Y2. 

Elt E2. Tlt and T2. System (12) could be iterated forward in time from an 

initial condition (Xl,O.X2,O) to see if it converges to the previously calculated 

steady state. 

This was done using parameter estimates for Areas 2 and 3 in the North 

Pacific halibut fishexy [Homans and Wilen (1997. Table II)]. Area 2 was 

designated as the sanctuaxy and Area 3 as the grounds. The diffusion 

coefficient was set at s = 100. Steady values of Xl and X2. were obtained by 

driving IG I(·) I + IG2(·) I to zero from a guess of Xl =250 and X2 =200 using 

Excel's Solver. Steady-state equilibria were determined when fishing was 

allowed in the sanctuaxy according to YI,t = CI + dlXl,t and when fishing was 

prohibited (CI = d l =0). The resulting equilibria and stability analysis are 

summarized in Table 2. 

When fishing was allowed in the sanctuaxy Xl =189.81 million pounds 

out of a carrying capacity of KI =318 million pounds and X2 =249.79 

compared to a carrying capacity of K2 =416 million pounds. These stock levels 

•implied a fleet of 47.55 vessels fishing for 3.09 days to obtain a harvest of 29.35 

million pounds in the sanctuaxy and 23.54 vessels fishing 5.72 days to harvest 

30.78 million pounds of halibut from the grounds. There is a small net 

9 



migration of fish from the grounds to the sanctuary with 

D(XI.X2) = - 0.35 million pounds. 

When fishing is prohibited in the sanctuary. Xl = 282.74 million pounds 

and X2 = 320.45 million pounds. On the grounds. there are 27.95 vessels 

fishing 4.22 days to haIVest 34.84 million pounds of halibut. With fishing 

prohibited in the sanctuary. there is a net migration of 11.88 million pounds 

from the sanctuary to the grounds. 

In the stochastic model, the dynamics of the fish stock in the sanctuary 

and on the grounds are given by 

XU+I = Xu + ZI,t+lrIXU (1- XU/KI ) - s(XU/KI - X 2 ,tlK2) - (CI + dIXU ) 

X2,t+1 = X2,t + Z2,t+lr 2X2,t (1- X 2 ,tlK2) + s(XU/KI - X 2 ,tlK2) - (C2 + d2X2,t) 

(15) 

where Zl,t+l and Z2,t+1 are each independent and identically distributed random 

variables. It does not appear possible to derive the induced joint distribution 

for Xl,t and X2,t based on a knowledge of the distributions for Zl,t+l and Z2,t+l. 

The effect of a sanctuary in this stochastic environment was examined through 

simulation under the assumption that Zl,t+l and Z2,t+1 were each independently 

distributed as uniform between zero and two [zt,t+I-U(0.2), i=1,2]. Twenty 

realizations. with horizons t=0.1 •....50. were generated. Biomass levels were 

calculated with and without Area One as a sanctuary. When Area One was 

designated as a sanctuary. fishing was prohibited by setting CI = d l = O. A 

typical realization is shown in Figure 1. 

Assuming a transition from XI,O = 318 and X2,O = 416 over the 

subinterval t=0.1, ....9. mean biomass levels and their standard deviations were -

calculated for t=10.11, ....50 for each realization. both with and without 

sanctuary status for Area One. Grand means and average standard deviations 
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were calculated over the twenty realizations. With no sanctuary, the average 

biomass in Area One was 191.42, while the average biomass in Area 2 was 

251.47. Recall from Table 2, that if fishing was allowed in both areas in the 

deterministic model, a stable steady state existed at Xl = 189.81 and 

X2 = 249.79; figures that are very- close to the average biomass after allowing 

for a transition from (Xl,O,X2,O). The average standard deviation with fishing 

was Sl = 20.49 and S2 = 24.07 for Areas One and 1\vo, respectively. 

When Area One is designated as a sanctuary, and fishing is prohibited, 

the mean biomass after t=9 was Xl = 283.01 in Area One, and X2 = 320.63 in 

Area 1\vo. These averages can be compared with the deterministic steady state 

from Table 2 where Xl = 282.74 and X 2 = 320.45. With Area One a sanctuary, 

Sl = 9.07 while S2 = 15.81. Thus, the designation of Area One as a no-fishing 

sanctuary increased average biomass in both areas and reduced the variation 

about mean biomass levels that were essentially equal to those calculated for 

the steady state in the deterministic model. 

v. Conclusions 

This paper has developed a model of regulated open access with diffusion 

between two areas in order to explore the potential role of a marine sanctuary. 

The role of a no-fishing sanctuary was analyzed in both a deterministic and 

stochastic marine environment. The deterministic model permitted the 

identification of regulated open access equilibria (steady states) with and 

without a sanctuary. The stability of any equilibrium in the deterministic 

model was easily assessed. In a numerical analysis of the North Pacific halibut 

fishery-, designation of a no fishing sanctuary resulted in a stable equilibrium • 

with higher equilibrium biomass levels in both areas. The sanctuary served as 

a significant source of fishable biomass that migrated to' the grounds. 
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In the stochastic model, where intrinsic growth rates fluctuated between 

zero and twice their value as specified in the deterministic model, designation 

of a no-fishing sanctuary resulted in higher biomass and a lower standard 

deviations in both areas. While the higher biomass and lower variation with a 

sanctuary might be attractive to fishery managers, it comes at an opportunity 

cost of reduced yield from the combined areas. In the deterministic model, 

when fishing was allowed in both areas, a combined yield of Y1 + Y2 = 60.14 

million pounds was achieved in steady state for the halibut fishery. When Area 

One was designated as a no-fishing sanctuary, the yield from Area 1\vo was 

34.84 million pounds, or 25.3 million pounds less than when fishing was 

allowed in both areas. 

-
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Table 1. Marine Sanctuaries in the United States
 

Site 
Channel Islands 

Cordell Bank 

Fragatelle Bay 

Florida Keys 

Flower Garden 

Gray's Reef 

Gulf of the Farallones 

Hawaiian Islands 
Humpback Whale 

Monitor· 

Monterey Bay 

Olympic Coast 

Stellwagen Bank 

Size 
1,658 sq mi 

526 sqmi 

0.24 sq rni 

3,674 sq rni 

56 sq rni 

23 sqrni 

1,225 sq rni 

1,300 sq rni 

0.79 sq rni 

5,328 sq rni 

3,310 sq rni 

842 sqrni 

Key Species or Historical/Cultural Significance 
California sea lion, elephant seal, blue whale, gray whale, 
dolphins, blue shark, brown pelican, western gull, abalone, 
garibaldi, rockfish. 

krill, Pacific salmon, rockfish, humpback whale, 
blue whale, Dall's porpoise, albatross, sheaIWater. 

tropical coral, crown-of-thorns starfish, blacktip shark, 
sturgeon fish, hawksbill turtle, parrot fish, giant clam. 

brain and star coral, sea fan, loggerhead sponge, tarpon, 
turtle grass, angelfish, spiny lobster, stone crab, grouper. 

brain and star coral, manta ray, hammerhead shark, 
loggerhead turtle. 

northern right whale, loggerhead turtle, grouper, sea bass, 
angelfish, barrel sponge, iVOry bush coral, sea whips. 

dungeness crab, gray whale, stellar sea lion, 
common murre, ashy storm petrel. 

humpback whale, pilot whale, monk seal, spinner dolphin, 
green sea turtle, trigger fish, cauliflower coral, limu. 

site of the wreck of the USS Monitor. 

sea otter, gray whale, market sqUid, brown pelican,
 
rockfish, giant kelp.
 

tufted puffm, bald eagle, northern sea otter, gray whale,
 
Pacific salmon, dolphin
 

northern right whale, humpback whale, bluefin tuna,
 
white-sided dolphin, storm petrel, northern gannet,
 
Atlantic cod, winter flounder, sea scallop,
 
northern lobster.
 

Source: http://www.rws.noaa.gov/ ocrm/nmsp/ 
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Table 2. The Bioeconomics of Marine Sanctuaries: The Deterministic Model
 

0 E FB C GA H 
Fishing in Sanctuay Stabilily_:Parameters1 IAlI" !, IA21 < 1 

- . _._._-­
---~----- '----­f-- ­

189.813907 a1,1=0.379 X1= 0.522385092 r1 = 
- -- ----------' ­ - .. ---_. ----_.._-"- -- -- -----­-- ---------------"-----­ .. - -- .-~-_.~------ ---'--- ----- ---- ­ _. - -- -- - ­f--- ­

249.796905318 a1,2=X2= 0.24038462K1=3 
-- -- ------- ---- --- - ---------- -------------- ---- - ------,-----'--'--_ .. _.. _-_.­-----.-- ----- ------ ­ -------._-- --- - --- -­---------_._­f--- ­

100 a2,1=4 0.31446541s= 
--- ---------_._-----_... ------_._----_._--~----_.._­ ----- ------- -----'-- ­

1.5266E-050.312 a2,2= 0.639420035 r2= G1J!<_1,X2)== __ 
---'---- ­f--- ­

6 416 -1.6776E-05 
- ­

K2= C3_~()(_1 ,xg):::__ ------------------ .­f--------- --- ----- --- --­ f--­f--- ­
12.33 3.2043E-05Sum of ASVs 7 p= 1.16180512c1=f--- ­

8 
_. - ----------- -- ._- - ------ ­ --f---------------- ­

0.0897 0.25843084d1= 1=--_._-------_._----­ ~-----c-­f--- ­

0.00114 47.5529656E1=9 g1= 
-----~--._-_._---c---------- ­f--- ­

0.0555 3.09930354 0.86200208T1= Al = 10 v1= -._----._- _._---­f--- ­

1 1 
-

1.0318 
--

Y1= 29.3563074 
­

0.29980304A2=f 1= L ______________'----­

c2= 16.417 E2= 23.5491966 
- ­

-.!.!.. -------- ._--------- --­~----

13 0.0575 T2= 5.72726858 
- ­

d2= 
--~---------------_._-

0.000975 30.7803221Y2=14 g2=
~ 

15 v2= 0.07848 
-

D(X1,X2)= -0.35742521 
- ­

2.099316 f2= 
I--- ­f---- -­

1.95
 
18 No Fishing in Sanctuary 

- ­
17 p= 

Stability~___ IAII < 1, IA.?~_ 
- --- ------- ------------------ f--- ­

0.39057064282.744769 a1,1=19 X1= 
20 

- -­ -----------f---------- ------ ­

0.24038462320.45762 a1,2=X2= 
-- r--­

0.31446541a2,1=21 
0.53342896a2,2=22 

­

_~_!(X!,X~L==- 9.5144E-06 
---_._-----~---f---- ­

23 ~_g{)(1,X2)=- 1.7459E-05 
24 

._-­ --~------ ----------­ _._---1---------- ­f--- ­
0.92399962.6973E-05Sum of ASS= p= 

---~----------- -- -------- ­f--- ­
0.13274904 

26 27.9517816 
- ­

25 1= 
E2= 

f--- ­
0.7460680527 

- ­

4.22367329T2= Al = 
-------- f------ ------- ----- ­

0.1779315528 34.8433131Y2= A2= ._---­ --- - -----'------------ -­

29 D(X1,X2)= 11.8803678 

•
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Figure 1. A Phase Plane Plot of a Sample Realization With and WiUlOut Area One as a Sanctuary 

X2,l 

450 

400 

350 ­

300 .,. 

250 

200 ­

150 
(X loX2) Cluster Without Sanctuary 

---------J 
\ 

..-.~ .... 
:? :. If;j_dl,t!---­ -...~.-..;... . 

• Il=---......ri~~ _J"~ -.- .~...]: -......~-ii.... l!~._. .-c. 
.~~ir:"- ., ___ .. •..-. (XltX2) ClusterWlth Sanctuary 

100 

50 -

oJ I I I I I I I Xu 

o 50 100 150 200 250 300 350 



References 

Clark, Colin W. 1990. Mathematical Bioeconomics: TIle Optimal Management of 

Renewable Resources (Second Edition), Wiley-Interscience, New York. 

Homans, Frances R and James E. Wilen. 1997. "A Model of Regulated Open 

Access Resource Use," Journal ofEnvironmental Economics and 

Management, 32(Jan):1-21. 

-




WPNo Ii1I.e 

97-18 Introducing Recursive Partitioning to Agricultural Credit 
Scoring 

97-17 Trust in Japanese Interfirm Relations: Institutional 
Sanctions Matter 

;. 
97-16 

97-15 

Effective Incentives and Chickpea Competitiveness in India 

Can Hypothetical Questions Reveal True Values? A 
Laboratory Comparison of Dichotomous Choice and 
Open-Ended Contingent Values with Auction Values 

97-14 Global Hunger: The Methodologies Underlying the Official 
Statistics 

97-13 Agriculture in the Republic of Karakalpakstan and Khorezm 
Oblast of Uzbekistan 

97-12 Crop Budgets for the Western Region of Uzbekistan 

97-11 Farmer Participation in Reforestation Incentive Programs in 
Costa Rica 

97-10 Ecotourism Demand and Differential Pricing of National 
Park Entrance Fees in Costa Rica 

97-09 The Private Provision of Public Goods: Tests of a 
Provision Point Mechanism for Funding Green Power 
Programs 

97-08 Nonrenewability in Forest Rotations: Implications for 
Economic and Ecosystem Sustainability 

97-07 Is There an Environmental Kuznets Curve for Energy? An 
Econometric Analysis 

97-06 A Comparative Analysis of the Economic Development of 
Angola and Mozamgbique 

~ 

97-05 Success in Maximizing Profits and Reasons for Profit 
Deviation on Dairy Farms 

97-04 A Monthly Cycle in Food Expenditure and Intake by 
Participants in the U.S. Food Stamp Program 

Author(s) 

Novak, M. and E.L. LaDue 

Hagen, J.M. and S. Choe 

Rao, K. and S. Kyle 

Balistreri, E., G. McClelland, G. Poe 
and W. Schulze 

Poleman, T.T. 

Kyle, S. and P. Chabot 

Chabot, P. and S. Kyle 

Thacher, T., D.R. Lee and J.W. 
Schelhas 

Chase, L.C., D.R. Lee, W.D. 
Schulze and D.J. Anderson 

Rose, S.K., J. Clark, G.L. Poe, D. 
Rondeau and W.D. Schulze 

Erickson, J.D., D. Chapman, T. 
Fahey and M.J. Christ 

Agras, J. and D. Chapman 

Kyle, S. 

Tauer, L. and Z. Stefanides 

•Wilde, P. and C. Ranney 

To order single copies of ARME publications, write to: Publications, Department of Agricultural, Resource, and Managerial Economics, Warren 
Hall, Comell University, Ithaca, NY 14853-7801. 


