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Abstract

Individual technology and efficiency changes of 49 New York dairy farms were
estimated using Malmquist indices. These were calculated using nonparametric
mathematical programming methods, which place no functional form restriction on the
technology, but since individual farm output is subject to stochastic events, a chance-
constrained specification was used. Over a ten-year period, the average technical
efficiency of these farms did not change, and technical change only averaged .2 percent.
A comparison assuming deterministic output showed little difference in averages, but

individual estimates varied.
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EFFICIENCY, TECHNOLOGY, AND PRODUCTIVITY
CHANGES ON INDIVIDUAL DAIRY FARMS

The dairy industry experienced dramatic changes during the last decade. As the
federal government reduced its role in that sector, milk and input prices oscillated and
new technologies were introduced. In such a competitive but dynamic market, the
productivity of a farm over time is paramount for its success. Productivity changes,
however, are comprised of two components. One is the shift outward of the technology
set, the other is an increase in efficiency within that technology set. Previous estimates of
agricultural productivity were not able to distinguish between these two components
(Ball). The ability to distinguish is important since a farm can increase its productivity
either by adopting new technologies or by more efficiently using old technologies.
Although all farms must eventually adopt new technologies to expand their production
set, many may find it advantageous to put more emphasis on efficiently using current
technologies and wait to adopt new technologies.

Fire, Grosskopf, Norris and Zhang (1994) demonstrate a technique that allows the
decomposition of productivity growth into two mutually exclusive and exhaustive
components: changes in technical efficiency over time, and shifts in technology over
time. Productivity growtﬁ is measured as a geometric mean of two Malmquist
productivity indices, which, unlike the Tornquist index, does not presume an underlying
functional form for technology. As such, they show how the index can be calculated
using nonparametric programming methods, which place no functional form restriction
on the technology. In addition, since the Malmquist is based upon distance functions,

which do not require cost or revenue shares to aggregate inputs and outputs, there is no




necessary underlying assumption that producers either minimize costs or maximize
profits. It is strictly a primal approach to measuring total factor productivity. Fire et al.
(1994) apply this technique to a sample of OECD countries over the period 1979-88.
Other applications of this technique include Fare, Grosskopf, Lingren and Roos (1992), as
well as Fire, Grosskopf, Yaisawarng and Wang (1990).

I use this technique with farm level data to measure the individual technology and
efficiency changes of 49 New York dairy farms. Very few estimates of individual farm
productivity are available, and none of these separate productivity into technology and
efficiency components (Shoemaker and Somwaru). A limitation to applying the Fére
et al. (1994) technique is that farm output is subject to random events such as weather,
which can noticeably affect nonparametric results where observations are treated
deterministically. To overcome that limitation, I modify the procedure of Fire et al.
(1994), allowing the occurrence of stochastic output by the use of chance-constrained
programming techniques (Land, Lovell and Thore). I compare results, treating output
stochastically and deterministically. Finally, technology shifts and efficiency decreases
are the underlying concepts in the adjustment cost theory of investment (Treadway). 1
test those concepts by regressing estimates of technology shifts and efficiency changes on

individual firm investment.

Procedure
For each time period t=1,...,T, the technology set transforming inputs x'e RY into

outputs y'e RM is defined as




s' ={(x',y'): x' can produce y'}.

The output distance function is defined at time t as
() D,(x',y")= inf 6 x',y'/0) € s'}= (sup e (x',6y") €' })_l.
This essentially shows how much y can be increased given a quantity of x, such that x and
Oy remain in the production set. An input distance function can similarly be defined and
under constant returns is reciprocal to the output distance function. An output rather than
an input distance function is used since farmers probably try to increase their outputs
given their use of inputs, rather than decrease inputs given their outputs.

To construct the Malmquist index, it is necessary to define distance functions with
respect to two different time periods as
2 D(x",y*")= inf {8 (x*',y"'/0) € s'}
and
3) Do""(x',y'):inf{& (x',y'76) e s'”}.
The first distance function measures the maximal proportional change in outputs required
to make (x'“, y'“) feasible in relation to the technology at time t. Similarly, the second
distance function measures the maximal proportional change in output required to make
(x', y") feasible in relation to the technology at time t+1.

Using these distance functions, Fire et al. (1994) then construct a Malmquist
index. Of interest here is how they decompose that index into efficiency and technical
changes as: -

DOHI(XHI,yHI) r
D,'(x',y")

efficiency change =




and

1
D l(le’yHl) D l(xl’yl) 2
technical ch = .
| cnnical change I:[ Hl(x y ) X t+1(xt+l’yt+l)

The Malmquist index is the product of efficiency change and technical change.

The distance function itself measures efficiency, and thus the efficiency change
measure is simply the ratio of two normal distance functions from two adjacent time
periods. The technical change measure is the ratio of the distance function at time t using
the netput vector at time t+1 (equation 2), to the distance function at time t+1 using the
netput vector at time t (equafion 3), measuring the output expansion that is possible.
However, since some of that output expansion may be due to efficiency change, it is
necessary to divide by the efficiency change, and then the geometric mean taken.

These defined distance functions are reciprocals to the output-based Farrell
measure of technical efficiency and can be calculated for each firm using nonparametric
programming techniques. The linear programming model to calculate output distance

function (1) for each of the K firms for each time period t is:

(4) (Dol (xk',l ’yk',l ))-l = max ek'

subject to

(4.2) kf,z y. 2 "" m=1,...M
=1
iz"'xn""an“ n=1,..,.N
k=1

@by 220 k=1,.,XK




where z is the intensity vector. The technology specified here is nonparametric but
assumes constant returns to scale and strong disposability of inputs and outputs.
If the outputs but not the inputs of the K firms are stochastic, then the constraint

specified by equation (4.a) can be treated probablistically as:

(4a)*P{ Z*y K > gy "‘}Zl—ai m=1,...,M.
k=1

This simply states that the constraint must be satisfied 1-o; of the time. Assuming that
the distribution of ymk't is multivariate normal, and using a critical probability level of .05,
equation (4.a)* of Problem (4) can be converted into its certain equivalent (Charnes and

Cooper):

k=l =1 =l

s
(4.a) ﬁz"“E{ym""}— 1.645 [ﬁ, 2 cov (y, "y M) u"“u"“] 20¥E{y*"} m=1,..,M

with p** = z** fork £ k', and p** =(z** -1) fork = k'.

The change of variable and introduction of uis necessary since the output of the k’th
firm occurs twice in the constraint. Some chance-constrained efficiency examples can be

found in Land, Lovell and Thore.
The nonparametric computation of D,*!'(x***!,y***!} is exactly like (4), where

t+1 is substituted for t. The two distance functions specified in equations (2) and (3)

require firm data from adjacent periods. The first is computed for firm k as
to ksl kY 'Y
® (D, y")) = max

subject to




n=1,...,.N
ﬁz""xu"‘t <x, k=1,.,K
k=1

o, =005

' 20
The second is specified as in (5), but the t and t+1 superscripts are transposed. Both are

transformed into their certain equivalents.

Data

The data are from 49 New York dairy farms that participated in the New York
Dairy Farm Business Summary for each year from 1977 through 1987. These 49 farms
are surprisingly heterogeneous, located throughout the State, and range in size from 21 to
403 cows in 1987 (average, 118; standard deviation, 83). On average, they increased
their cow herds by 36 percent over the 11-year period, although a few maintained their
size. Milk production per cow averaged 15,573 pounds during 1987, which is greater
than the state average of 13,920 pounds during that year. If high milk production per cow
is a sign of good management, then these farms are well managed.

Six inputs and one output were defined. Although the procedure can handle any
number of outputs, outputs other than milk, such as cull cows and excess grown feed, are
by-products of milk production, and milk usually consists of about 85 to 90 percent of
receipts. To maintain a low input/output dimension, these miscellaneous outputs were
converted into a milk equivalent by dividing receipts by the farm price of milk. The six

inputs (Table 1) were constructed by aggregating 28 separate expense items into one of




the six inputs using a geometric average with individual firm cost shares for each input as
weights. Unfortunately, this aggregation imposes functional structure and cost
minimization behavior on the data, the absence of was the motivation for a nonparametric
approach. However, aggregation of 28 measured inputs into a reduced set is necessary so
that not every firm is measured as technical efficiency. Leibenstein and Maital state that
given enough inputs all (or most) of the firms will be rated efficient, as a direct result of
the dimensionality of the input/output space relative to the number of observations
(firms).

After aggregation, expenditures and milk receipts were converted into quantities
by dividing by annual published price indices (1977 = 100). This essentially converts all
expenditures and receipts into 1977 dollars with the assumption that all farmers paid and
received the same prices in any given year. In the sense that some individual farm
expenditures were greater because of a higher price paid for a quality input (hired labor,
as an example), then dividing by the same price for all farms converts these inputs into a
quality-adjusted input, reflected as a larger quantity of a constant-quality input.

To apply the chance-constrained approach, it was necessary to formulate the
expected output and variance/covariance of output. The simplest approach would be to
take the actual production during a given year as expected output, and compute the
variance/covariance matrix across the 49 firms using the 11 years of data. Since most
farms displayed a general increase in output over the 11-year period, this would overstate
variance. As an alternative, the variance/covariance matrix was estimated from the -

residuals around a linear trend line fitted for each of the 49 farms using actual output over




the 11-year period as the dependent variable. As expected, the statistics from these
regressions varied significantly, with a maximum R? value of .91, minimum of 0, and
average of .45 (standard deviation was .28). It would also be possible to use the predicted
value from the regressions as the expected output for any firm in a given year, but this
would imply that any deviation from the trend was due to random error and none due to
productivity. Thus, actual rather than forecasted values were used for the expected values
of output. The coefficient of variation for the 49 farms averaged .12, with a minimum of
.05 and a maximum of .26, computed from the square root of each farm’s variance

divided by the average output of each farm over the eleven years.

Productivity Results

The chance-constrained programs are nonlinear, and when using the covariance of
output from 49 farms they become quite large. GAMS/MINOS was used to obtain
solutions, and given that the problem was large and nonlinear, that software indicated that
some of the obtained solutions may not be optimal. Rather than modify parameters of the
MINOS solver, the covariance components of the programs first were dropped, and the
models were run using only the variance of outputs. The correlation between the
covariance solutions obtained and the counterpart variance solutions was .98, implying
little accuracy was sacrificed using variance only. This may be due to the fact that the
covariance values were low and almost half of the covariance terms were negative. This
implies that there is no systematic factor affecting the randomness of output between

farms. This may be because a common factor, such as weather, does not affect dairy




production to the extent it impacts crop production. All of the results that follow are
derived using only variance components of the 49 farms.

Since there are 11 years of data for 49 farms, 490 estimates of productivity,
efficiency, and technical changes are generated. These are summarized in Table 2, which
lists the geometric average for each of the 49 farms.

There is variation across farms. Farm #35 had the largest efficiency change
average, at 5.3 percent (1.053), followed by farm #36 at a much lower 2.1 percent. Farm
#48 had the lowest efficiency change average at -4.5 percent (.955). Twenty-seven of the
49 farms did not experience ény change in their technical efficiency, while 10 increased
their technical efficiency and 12 decreased their technical efficiency. On average, these
farms did not experience any change in technical efficiency. That is as expected since
technical efficiency is measured relative to the group.

Technical change averaged .3 percent over the 49 farms, with farm #39 having the
largest at 9.6 percent, and farm #15 the second largest at 5.3 percent. Negative technical
change was experienced by 27 farms, but of those, 22 still had indices over .98, implying
that only 5 of the 49 farms experienced significant regressive technological change. Still,
the fact that only 20 of the farms experienced positive technical change does not bode
well for the future success of these dairy farms, and may partially explain why the number
of dairy farms in New York decreased from 20,000 farms in 1978 to 14,500 farms in
1987.

Productivity change is the product of efficiency change and technical change. As

such, farm #39, which had the highest technical change, experienced the largest




productivity change average of 9.5 percent. Farm #35, which had the largest efficiency
change, experienced the second largest productivity gain average of 2.9 percent. Farm
#48, with the lowest efficiency gain, experienced the lowest average productivity gain of
-5.8 percent. Only half of the farms experienced positive productivity change over this
period.

Although the average productivity of the farms was low over this period, there
were some years when the productivity increased significantly. As shown in Table 3, the
greatest productivity change was 7.1 percent from 1979 to 1980, and the lowest was -.039
percent from 1986 to 1987. A previous estimate of New York dairy farm productivity
from 1978 through 1982 was 6.6 percent (Shoemaker and Somwaru). Over that period

the productivity of this group of dairy farms increased 8 percent.

Investment and Productivity Results

Previous attempts at explaining the efficiencies of New York Dairy Farm
Business Summary farms generally have not been successful, with only about 10 percent
of the variation explained (Tauer). This inability to explain inefficiencies has also been
found for Pennsylvania dairy farms (Grisley and Mascarenhas), and New England dairy
farms (Bravo-Ureta and Rieger). Thus, no attempt is made here to explain efficiencies as
a function of the characteristics of these farms. However, what is being computed are
temporal changes in individual farms’ efficiency and technology, so an opportunity exists
to relate these changes to investment changes made at the farm level.

Separating the productivity index into efficiency and technological change

components allows isolating shifts in the production frontier from catching up to that
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frontier. At the firm level, this is synonymous with the adjustment cost model of the firm
(Treadway). A firm makes an investment that shifts up the production function, but in
the short run output is decreased because of learning. To test this concept, both efficiency
and technological change components are regressed separately on investment changes at
the farm level. Investment is measured as the percentage change in assets each year.
Since many farms raise their own cows, this measure is much more inclusive than
purchased assets. Also included as a dummy variable is whether the farm changed its
barn/milking type during the year. This is a technological change but may also cause a
reduction in efficiency as workers learn to use the new equipment. Also included is the
percentage change in cow numbers as a measure of farm size change.

All three of these variables were regressed with the 490 efficiency observations
and then on the technological change observations. The results are shown in Table 4.
The signs are generally what is expected. An increase in assets and a change to a new
barn type decreases efficiency. An increase in assets shifts the production set outward.
However, the overall fit of the equations is low. A change in assets, cows, or the barn
type explains very little of the efficiency and technological changes occurring on these

dairy farms.

Deterministic Results
In this paper, output was treated as stochastic, and chance-constrained
programming was used to compute indices rather than treating output deterministically.
It was argued that farm output is subject to weather and other stochastic events that have

nothing to do with efficiency or technology. The obvious question becomes: Is it worth
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the added effort? To provide some information to answer that question, the indices were
also computed treating output deterministically. There are 490 observation for each index
and the statistics are summarized in Table 5.

As expected, if one has numerous estimates then random error averages out. Over
the 490 estimates, the mean efficiency estimate treating output stochastically was 0.999.
The mean efficiency estimate treating output deterministically was similar at 1.001. The
means for the stochastic and deterministic technology change variables were also similar,
as were the productivity or Malmquist indices. However, there were differences in
individual estimates. The correlation between the 490 estimates of stochastic efficiency
change and deterministic efficiency change was only .76, and the correlation between
stochastic and deterministic technology change was even lower at .72.

Random output events occur between farms in any year but are probably more
significant between years. Since the efficiency measure compares distance function
values between farms in any given year, but the technology measure uses distance
functions from adjacent years, it is logical that the stochastic and deterministic technology
estimates be less correlated than the stochastic and deterministic efficiency estimates.
Note that, in contrast, the Malmquist deterministic and stochastic productivity estimates
are highly correlated at .94. It appears that if one is interested in comparing individual
estimates, especially technological change, then treating output as stochastic is important;

in the long run, however, randomness averages out.
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Summary and Conclusions

A technique that allows the decomposition of the Malmquist productivity index
into the technology and efficiency components was used to compute the technology and
efficiency change on 49 New York dairy farms over the period 1977-1987. Since the
Malmgquist index does not presume an underlying functional form, it was computed using
nonparametric programming techniques. However, since individual farm output is
subject to stochastic events unrelated to technology or efficiency, a chance-constrained
specification was used.

The average technology change of the farms over the 10-year period was only 0.3
percent, while the average efficiency change was a negative .01 percent, indicating that
most of the productivity increase of these farms was due to gains in technological change
rather than efficiency. The overall productivity gain of the farms over the 10-year period
was very low at 2 percent, although during the 5-year period of 1978 through 1982, their
productivity increased 8 percent. Although very little of the variation was explained,
investment increased output, but led to a decrease in efficiency.

When compared with estimates from a deterministic nonparametric model, the
means and standard deviations from the stochastic model were similar, although
individual estimates varied. The correlation between the stochastic and deterministic
technology estimates was only .72. This implies that stochastic output needs to be
modeled if individual estimates are needed, but random errors avefage out over a group of

estimates.
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Table 1. Input and Qutput Variables Used to Measure Malmquist Indices

1977 Average* 1987 Average*
Variable (Standard deviation) (Standard deviation)
Labor . 12,525 14,227
(8,475) (14,329)
Purchased feed 27,119 42,071
(15,208) (30,362)
Energy 3,295 - 3,769
(1,954) (2,688)
Inputs for livestock 4,117 4,735
(5,241) (3,796)
Inputs for crops 17,665 22,838
(13,384) (19,589)
Real estate input 10,720 16,561
9,124) " (13,896)
Milk output 84,673 117,612
(52,861) (86,099)

*All values in 1977 dollars (1977=100).
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Table 2. Geometric Means of Efficiency, Technical, and Productivity Changes for
49 Dairy Farms Over 11 Years (Computed from Malmquist Chance-Constrained,

Nonparametric Model)
Farm Efficiency  Technical  Productivity
1 1.000 0.967 0.966
2 1.011 1.000 1.010
3 0.983 0.989 0.972
4 0.980 0.992 0.971
5 1.000 0.948 0.947
6 1.005 0.991 0.995
7 1.000 1.012 1.012
8 1.009 0.999 1.008
9 1.000 0.985 0.984
10 1.000 1.020 1.019
11 0.984 0.991 0.975
12 0.997 0.985 0.982
13 0.993 0.984 0.976
14 1.000 1.045 1.044
15 1.004 1.053 1.057
16 0.971 1.009 0.980
17 0.993 0.994 0.987
18 1.000 1.022 1.022
19 1.013 1.008 1.020
20 1.000 1.004 1.003
21 1.000 1.007 1.006
22 1.000 1.032 1.031
23 1.000 1.002 1.002
24 1.007 1.021 1.027
25 0.973 0.988 0.961
26 1.000 0.990 0.990
27 1.000 0.983 0.982
28 0.993 0.983 0.975
29 1.010 0.996 1.006
30 1.000 0.996 0.996
31 1.000 1.000 0.999
32 1.000 1.018 1.017
33 0.976 0.988 0.963
34 1.021 1.001 1.022
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Table 2. Geometric Means of Efficiency, Technical, and Productivity Changes for
49 Dairy Farms Over 11 Years (Computed from Malmquist Chance-Constrained,
Nonparametric Model) (cont.)

36 1.021 0.969 0.989
37 1.000 1.005 1.004
38 1.000 0.999 1.000
39 1.000 1.096 1.095
40 1.000 1.055 1.053
41 1.000 0.980 0.979
42 0.990 0.996 0.985
43 1.000 1.066 1.064
44 1.000 1.049 1.048
45 1.000 0.991 0.993
46 1.000 0.981 0.980
47 1.000 0.995 0.994
48 0.955 0.986 0.942
49 1.000 1.036 1.035
Geometric Mean 0.999 1.003 1.002
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Table 3. Productivity Change by Year for 49 Dairy Farms (Geometric Means)

Year Productivity Change
1977-78 0.964
1978-79 1.027
1979-80 1.071
1980-81 1.019
1981-82 0.966
1982-83 0.998
1983-84 0.969
1984-85 1.015
1985-86 1.024
1986-87 0.961

Table 4. Linear Regressions of Efficiency and Technological Changes on Farm

Changes
Efficiency Technology

Constant 1.0087* 1.0049*

(T-statistic) (162.48) (124.34)
Asset change (percent) -.0007* .0011*

(T-statistic) (-2.11) (2.55)
Cow number change (percent) 0014 0011

(T-statistic) (-1.91) (1.19)
Barn change (dummy) -.0650* -.027

(T-statistic) (-2.10) : .67)
Adj.R 02%* 01*

(F value) (3.90) (3.31)

*Statistically different from zero at .05.
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Table 5. Comparison of Efficiency, Technological, and Productivity Changes
Treating Output as Stochastic and Deterministic :

Geometric Mean

Deterministic efficiency

Stochastic technology
Deterministic technology

Stochastic productivity
Deterministic productivity

Deterministic efficiency
Deterministic technology
Deterministic productivity

1.001

1.003
1.002

1.002
1.003

Correlation with

stochastic measure

76
12
.94
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