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Abstract -

Resampling or simulation techniques are now frequently used in applied economic
analyses, but previously developed significance tests for differences in empirical
distributions have either invoked normality assumptions or used non-overlapping
confidence interval criteria. This paper demonstrates that such methods will generally
not be appropriate, and presents an exact empirical test, based on the method of
convolutions, for assessing the statistical significance between approximate empirical
distributions created by resampling techniques. Application of the proposed convolutions
approach is illustrated in a case study using empirical distributions from dichotomous

choice contingent valuation data.
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A Convolutions Approach to Measuring the
Differences in Simulated Distributions:
Application to Dichotomous Choice Contingent Valuation

Introduction

Resampling or simulation techniques are increasingly applied to estimate
standard deviations and confidence intervals for welfare measures (Kling; Kling and
Sexton; Adamowicz, Fletcher and Graham-Tomasi; Creel and Loomis), elasticities and
flexibilities (Dorfman, Kling and Sexton; Marquez), economies of size and scope
(Eakin, McMillan and Buono; Schroeder), travel cost models (Loomis, Park and
Creel), and contingent valuation (Park, Loomis and Creel, Duffield and Patterson;
DesVousges et. al., 1992a, 1992b). While considerable effort has been focused on
motivating, developing and comparing alternative methods of approximating
distributions, very little attention has been given to developing formal statistical tests
of the difference between approximate empirical distributions generated by these
techniques. Such assessments are essential to applied economic and policy analyses in
which comparison of point estimates are needed across policy alternatives, population
and commodity groups, inputs, and levels of provision of non-markctcd goods.

Using the dichotomous choice contingent valuation method (DC-CVM) as an
example, this paper presents a statistical test, based on the method of convolutions, to
evaluate the significance of the difference between approximate empirical distributions

and illustrates how to apply this test to actual DC-CVM data. Because the
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convolution formula provides an exact measure of the statistical significance of the
difference between empirical distributions, it is preferable to i)revious techniques that
either impose restrictive assumptions of normality or adopt a non-overlapping
confidence interval criterion. Moreover, the non-parametric nature of this test is a
logical extension of the motivations for using empirical distributions in the first place.

The DC-CVM was chosen as a vehicle for demonstrating this approach
because: 1) bootstrapping and other resampling techniques are widely being adopted to
approximate distributions of DC-CVM benefit measures; 2) comparisons of benefit
measures for different quality levels and scenarios is a fundamental objective of DC-
CVM (Cummings, Brookshire and Schulze; Mitchell and Carson); 3) benefit
comparisons are also essential to assessing the validity and reliability of the contingent
valuation method (Bishop and Heberlein; Loomis); and 4) DC-CVM is an area in
which statistically biased or otherwise inappropriate techniques for comparing
approximated distributions have been used and reported by some researchers. It is
essential to note, however, that the discussion that follows is not limited to the
particular estimation approach applied in this example. The criticisms and suggested
techniques developed in this paper with respect to DC-CVM are generalizable to any
simulated distributions of economic parameters for which it is reasonable to ask "Is
the difference between distributions significantly different from zero?".

The remainder of this paper is organized as follows. A critique of the metﬁods
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currently being used to evaluate the significance of the difference between empirical
distributions is provided in the following section. The third s.ection presents the
convolutions method. The mechanics of this technique are demonstrated using simple
hypothetical distributions in the fourth section, and the convolutions technique is

applied to DC-CVM data in the fifth section.

A Critique of Past Methods for Evaluating Differences in Simulated Distributions

Instead of providing a detailed review of resampling techniques currently being
used in the economic literature, this paper assumes that two approximate empirical
distributions of point estimates, such as those presented in Figure 1, have already been
created'. Interpretation of Figure 1 is as follows: f5(X) and f,(Y) are the simulated
probability density functions for parameters X and Y; the shaded area represents an
approximate (1-y) confidence interval; and L, () and U, (.) depict the lower and upper
bounds of this confidence interval. Although the two distributions lie on the same
number line, they are separated in the figure in order to isolate the degree of overlap
between the two confidence intervals.

The dichotomous choice format asks individuals if they would be willing to
pay a specified amount, or bid value, for a public good. Bid values (A) are randomly
assigned across survey participants, and the yes/no (1/0) responses across participants

and bid values can be modeled using a random utility framework (Hanemann, 1984).
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The following linear logit distribution is frequently used to model the cumulative

distribution function (G(A;0)) of willingness to pay

G(4;8) = IINA) = [1+€°]" (1a)

where,

0=a-PA +EX (1b)
IT(A) is the probability of a 'no’ response to bid value A, X is a vector of other
explanatory variables, and o, P and § are coefficients to be estimated (Hanemann
(1984); Bowker and Stoll; Boyle and Bishop). Approximate empirical distributions of
the mean that correspond to those presented in Figure 1 may then be calculated using
resampling techniques (e.g. bootstrapping, Krinsky and Robb, monte carlo) for the

estimated coefficients and the following closed-form solution presented in Hanemann

(1989)

EQWTP) = [[1-G(4:0)1d4 = %m(mwf) @)
0

In the above equation, E is the mathematical expectation operator and X is the mean
value vector corresponding to X.

Two techniques for evaluating the significance of the difference between these
distributions have been proposed in the literature. The first, as implicitly suggested by

Krinsky and Robb and applied by Desvousges et al. (1992b), is that if the simulated
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distributions are approximately normal then classical statistical procedures for
estimating differences can be applied. For in.stance, assuming equal and known
standard errors (STDERR) for two normal distributions, the null hypothesis that the
’true’ mean of the first distribution is equal to the 'true’ mean of the second
distribution is tested using the following difference formula,

(X,-X)

Z=F—— ~N(©,1) ®3)
2+STDERR

where Z is the test statistic and X, are the sample means (Snedecor and Cochrane, p.
101). As noted, the Z value has a standard normal distribution. In the bootstrapping
framework, the standard error of the mean is given by the estimated standard deviation
of the empirical distribution of the mean estimate.

Objections to this normality assumption occur at both a theoretical and
empirical level. First, much effort has been given to developing these empirical
approaches in order to capture non-linearities, and subsequent non-normalities, of the
functions of parameters used to calculate the desired distribution. It would seem
counterproductive to impose unneeded parametric assumptions at this stage. Second,
our experience suggests that empirical distributions estimated following tﬁe method
associated with Equations (1) and (2) are skewed, and the assumption of
’approximately normal’ is often inappropriate. More generally, there is little reason to

assume that non-linear functions of normal parameters will approximate a normal
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distribution, a fact that is equally relevant to elasticities, flexibilities, and welfare
measures.

Park, Loomis and Creel (hereafter PLC) avoid the assumption of normality by
employing a non-overlapping confidence interval criterion to evaluate differences in
point estimates. That is, PLC judge the differences in mean willingness to pay across
estimates to be statistically significant at the 10 percent level if their empirical 90
percent confidence intervals do not overlap. This approach is also used in Desvousges
et al. (1992a) who state that "overlapping confidence intervals imply that significant
differences do not exist...between WTP estimates” (p. 22). With respect to Figure 1,
the distributions are judged, using this criterion, to be significantly different at the 5
percent level if Uy os(Y) lies to the left of L, os(X) on a number line. If L4(X) lies to
the left of U,,(Y) then the two central confidence intervals overlap and the
distributions are not judged to be significantly different at the 5 percent level using the
non-overlapping confidence interval criterion.

In general, the actual significance of this non-overlapping confidence interval
approach will not correspond to the stated level of the test. This point is demonstrated
most simply for normal distributions using the analytical solution presented in
Equation (3). Recall that for a single normal distribution the 95 percent confidence
interval for the mean of an estimate is defined as i, + 1.9600%(STDERR). Again

assuming that the standard errors for both distributions are known and equal, this




implies that the critical difference in means, (X, - X,), associated with the non-
overlapping 95 confidence intervals would have to be at least 3.9200 standard errors
apart before they would be judged to be significantly different. Making this
substitution, Equation (3) becomes

7= (3.9200+STDERR) _3.9200
V2*STDERR V2

=2.772 @

The estimated z value of 2.772 corresponds to a significance level (which shall be
referred to as y’) of 0.0048 rather than the stated value of y=0.05.

Conversely, Equation (4) can be rearranged and solved for the difference
between two means that corresponds to a non-overlapping confidence interval for
¥=0.05. Simple algebra and a critical value of 1.§6OO indicate that the point where the
two means is significantly different occurs when the means are approximately 2.772
standard errors apart. At this distance, the non-overlapping two-sided confidence
intervals only encompass about 87 percent of their respective distributions.

Clearly the non-overlapping confidence interval criterion given by (1-y)
confidence intervals does not correspond to the 7 level of significance for the normals
case. In general, a lack of correspondence between ¥ and 7y’ is expected. For the
normal distribution above, the significance level is understated (i.e. Y > 7’) and the test
is more conservative than indicated. The degree of this difference between y and ¥’

will depend upon the shape of the empirical distributions that are being compared.
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In sum, the two methods currently being applied in DC-CVM either involve

inappropriate assumptions or are statistically biased.

The Method of Convolutions
Another alternative - one that accommodates any distributional form - is based
on the method of convolutions. This technique is used in statistics and mathematics to
evaluate the sum of distributions of random variables and series (Feller; Mood,
Graybill and Boes).
Let X and Y be independent random variables?, with respective probability

density functions fy(x) and fy(y). Then, for all values of X and Y

f(x,y) = (OB - (5)
Define the difference V = X-Y to be a new random variable. The probability of the
event V=v is defined as the union of all the possible combinations of x and y which

result in a difference of v. For continuous functions this relation is given explicitly as

£ ) = fry®) = [flx-0fi0)dx = [f(v+9)f, )y ©

which is a variant of the convolution formula (Mood, Graybill and Boes). Using only
the far right hand side of Equation (6), the cumulative distribution function Fy(v°®) of

the difference of X and Y is




v V-
F, ) = [fndv = [ [f(v+9)fy()dyay ™

For empirical applications with discrete observations, the dimensions of Equation (7)
can be reduced substantially. If f,(y)=0 or fy(v+y)=0 then f(v)=0 also. This implies
that the range of the first integrand can be bounded by the minimum of the ordered y
vector and the value of y for which (v+y) exceeds the range of the empirical
distribution of fy(x). These values shall be denoted infy and supy, respectively.
Similarly the second integral can be bounded from below by the minimum possible
value for X-Y, denoted here as infv. In this manner Equation (7) can be restated for

discrete probabilities obtained from simulation procedures as

. v supy
F,0°) = 1) f(v+3)fp(y)AyAz 8)
info infy

where I@V(v"),?’x(x) and ?’Y(y) are discrete approximations of F,(v°), f(x) and f,(y).
The incremental values for y and z are defined by the desired level of precision and
computational power.

The above equations can be directly applied to the information provided from
the simulated distributions. As in the simulation methods, the distribution of the
differences will generally not be known, and an empirical approach to estimating

confidence intervals is necessary. Adopting a ’percentile approach’ (Effron) the lower
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bound and upper bound of the 1-y confidence intervals are respectively defined as

L,_(2)=F;'(y) 0, ,@=F; (1-y/2) ©)
And,
[L,_(2),0,_(2)] (10)

is the approximate (1-y) central confidence interval for Z. This range will often be
non-symmetric around the mean.

Combining the principle of the two sided difference in means test with a
percentile approach, the null hypothesis that the difference between X and Y equals
zero is accepted at the 7y level of significance if the approximate (1-y) confidence
interval of the convolution includes zero and rejected otherwise. Alternatively,
assuming that the distributions are ordered in a descending fashion, the approximate
significance of the difference between distributions is determined by twice the value of

the cumulative distribution function at the convoluted value of zero.

A Simple Demonstration of the Convolutions Technique
This section demonstrates the application of the discrete convolution formula
presented in Equation (8) and the suggested statistical test for estimating the
significance of the difference between two approximate empirical distributions.

Suppose that we are interested in evaluating the difference between the two
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approximate empirical distributions presented in Table 1. The probability density
function (pdf), cumulative distribution function (cdf), and the calculations required to
generate a convolution of these distributions are demonstrated in Table 2, where f,,(.)
and Fy(.) are the pdf and cdf respectively and only the values that lie within the
bounds set by infy, supy and infv are reported. Evaluating F(0) indicates that the two

distributions are different at the 17 (=2*0.085) percent level.

Application of the Convolutions Approach

This section applies the convolutions technique to evaluating differences in
compensating variation associated with two different water flow levels in the Grand
Canyon. In addition, this section further demonstrates that the normality based
approach and the non-overlapping confidence interval criterion are inappropriate and
may lead to misguided conclusions about the significance of the difference between
distributions in policy relevant applications. In order to focus on the convolutions
technique, the model presented in this example is intentionally simplistic -- only the
bid value and cost of the trip are included as explanatory variables in the statistical
analysis. More sophisticated models and a greater description of the study are
presented in Bishop gt al. [1987], Bishop et al. [1989], and Boyle, Welsh and Bishop.

Flow level in the Grand Canyon is a decision variable for the Glen Canyon

dam, which generates electricity and regulates flows below the dam. These flow
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levels, measured in cubic feet per second (cfs), are outside the control of boaters but
do affect the quality of whitewater rafting trips in the Grand Canyon.
"Time at attraction sights, such as Indian ruins and side canyons with
pleasing scenery, and for layovers, depends on the speed of the current.
The size and the number of rapids are affected by dam releases. Boaters,
particularly those on commercial trips, enjoy fairly large rapids that depend
on substantial flows. At relatively low flows and flood flows, passengers,
particularly those on commercial oar powered trips, may have to walk
around rapids. This is generally considered undesirable by passengers"
(Bishop et al., 1987, p. 11-12)

Given these considerations, Hicksian surplus values for different flow levels are

implicitly defined as

V(P,Y-H;f) = V(P™Yf) an
where V() is an indirect utility function, P is the price, Y is income, f; is the jth flow,
H; is Hicksian compensating surplus (WTP) for the jth flow, and PM is the choke price
at or above which the trip would not be taken (Boyle, Welsh and Bishop). In this
simplified analysis other trip attributes and personal characteristics are assumed to be
constant, and are subsumed here for notational convenience.

Two different flow ranges are considered in this analysis: 0 to 25,000 cfs and
26,000 to 33,500 cfs. These flow ranges are termed low and high flows respectively.
The value of 33,500 cfs corresponds to the maximum flows that can be used to
generate electricity by the dam, and thus represents the maximum of the policy

relevant range. The 25,000 cfs cut-off point approximates the mean of the flow levels
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experienced by participants in the survey sample, and was used as an ad hoc division
between low and high flows.

The linear specification of the logit model detailed in Equation (1) above was
used to evaluate the distribution of willingness to pay from bid values and responses,

with

0, = a+BA+EP (12)

In the above equation o, B and & again represent coefficients to be estimated, j
indicates the range of flows experienced, P is the price of the trip taken, and A is the
dichotomous choice bid value. Respondents were grouped into flow level categories
based on their mean flow level experienced during their trip taken from hydrological
data. As presented in Table 3, the estimations are fairly robust. Although some
individual coefficients are not significant, each estimated equation has highly
significant %* values.

In addition, log-likelihood ratio tests indicate that the estimated distribution of
WTP for the low and the high flow levels are significantly different at the 10 percent
level (LR=8.27 > %7 ,=6.25). Thus, we can conclude that, over these flow ranges,
flow levels do have a significant effect on the distribution of WTP.

Whether there are significant differences in Hicksian surplus values is a
different question, one that can only be answered by comparing distributions of mean

willingness to pay estimates. Formally the hypothesis being tested is that




H,=H, : (13)
where H; and Hy are the Hicksian surpluses associated with low and high flow
conditions.

Estimated means and their distributions for each scenario were created by
applying the Krinsky and Robb technique to the closed-form solution presentéd in
Equation (2) above®. In calculating the empirical distributions, intervals for Ay and
Av were set at 1. Critical points on these distributions are presented in Table 4 and
the distributions themselves are presented in Figure 2.

Evaluation of Table 4 and Figure 2 indicate two points of interest. First, the
distributions evaluated here are significantly skewed and apparently deviate from
normality. As a result of this observation, classical difference tests based on normality
assumptions are not relevant here®. The second interesting point is that in spite of the
statistical significance between WTP distributions for low and high flows, their
distributions overlap considerably. Most notably, their 90 percent confidence intervals
do overlap and thus, the application of the non-overlapping confidence interval
criterion would lead to the conclusion that the mean WTP distributions are not
significantly different at the 10 percent level.

A different conclusion is reached with the convolutions method detailed in this
paper, for which the distribution is plotted in Figure 2 and critical points are identified

in Table 5. In contrast to the non-overlapping confidence interval criterion, the mean
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willingness to pay values for low and high flows are judged to be significantly
different at the 4.2 percent level and the 90 (and 95) percent confidence intervals for
the difference do not include zero. This level of significance is clearly less than 10
percent, indicating that the non-overlapping confidence interval criterion would lead to
erroneous conclusions of significance in policy relevant situations. In this instance,
the deviation between the significance judgement of the non-overlapping confidence

interval and the actual level of significance is substantial.

Summary and Conclusions

Economists have increasingly turned to resampling or simulation techniques to
explore the variability in a wide range of estimated economic parameters, including
elasticities, flexibilities and various welfare measures. Undoubtedly resampling and
simulation techniques are a valuable tool for exploring the inherent variability of
estimated parameters for which it is difficult (if not impossible) to develop analytic
variance estimates. However by themselves, these techniques do not provide a way to
compare the distributions that arise from applying the techniques in various contexts.
Often it is this comparison that is of most interest. For example, is the price elasticity
significantly different between two demographic groups? Do any of the various policy
options result in a higher value of the estimated welfare measure?

Appropriate answers to these types of questions require appropriate statistical
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tests. The two approaches that have been uscd and reported by researchers to compare
approximate empirical distributions are inappropriate in most applications. The
method of convolutions, as presented in this paper, does provide a proper statistical
test for assessing the significance of the difference between two distributions and
represents a logical extension of resampling techniques.

Application of the convolutions approach is not costless, however. While some
computing packages offer routines that will perform a convolution of two
distributions®, the actual calculation of the convolution can be computationally
intensive if the distributions have many points.

The decision of whether to adopt the convolutions approach will depend upon
the objective of the research and the nature of the distributions. With respect to the
normality assumption the decision is obvious. For those cases in which the hypothesis
of normality is rejected, then using a normality based approach is wrong. Under those
circumstances a convolutions approach would seem justified. The answer is less clear
when considering the non-overlapping confidence interval criterion. The criterion is
conservative in the sense that if two differences are found to be non-overlapping at the
5 percent level the difference between the two distributions is certainly significant at
that level. However it is possible that the 95 percent confidence intervals will overlap,
and yet, the distributions will actually be different at the 5 percent level. If the

consequences of declaring a significant difference insignificant is of little importance
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then the non-overlapping confidence criteria might be deemed an acceptable test. Yet,
if one is interested in reducing the chance that a significant difference is missed or if
the researcher desires to report the actual level of significance, then the convolutions

approach may prove advantageous.
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Endnotes:
1. A critical review and comparison of the three techniques currently being used in
DC-CVM is provided in Poe. The techniques themselves are developed separately in

Park, Loomis and Creel, Duffield and Patterson, and Desvousges et al. [1992b].

2. Independence is not necessary for the convolution formula itself, but this
assumption facilitates the empirical application of this method. This is not meant to
imply that the assumption of independence is inconsequential. Indeed, for contingent
valuation it implies that these estimates should be derived from separate samples or
by some other means that assures independence. The need for independent samples
is shared by other statistical approaches. For example, in applying the classical
techniques based on normality assumptions Desvousges ¢t al. (1992b, p. 30) note that

"using independent samples....is essential for the hypothesis testing".

3. Estimates of the significance using methods suggested in Duffield and Patterson
and Desvousges et al. [1992b] provide similar results and are available from the

authors.

4. Application of the normality based approach depicted in Equation 3 (after
accounting for inequality in the standard errors) yields z = 1.24 = (782.79-
548.23)/(171.49% + 79.02%)%%. The corresponding two-sided significance level is

approximately equal to 21.5 percent. When comparing this significance level to
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those provided later in the paper it should not inferred from this one sample that the
normality based approaches that use standard errors will grossly understate the true
difference and the difference obtained from using the non-overlapping confidence
interval criterion. The direction and the degree of the relation between these values

will be particular to the distributions being compared.

5. The convolutions program used in this paper was performed in GAUSS, making
use of the CONV routine. It is our understanding that the option of programming

a convolution exists in other matrix based languages (e.g. SAS-IML).




Figure 1: Simulated Distributions and
the Non-Overlapping Confidence Interval Criterion
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Table 1
Hypothetical Distributions

Range fx() fv()
0 0.00 0.05
1 0.00 0.30
2 0.10 0.60
3 0.40 0.05
4 0.40 0.00
5 010 | 000
Table 2

Demonstration of Convolution for Simple Distributions

fv(-1) =

£v(0)

fu(1)

fv(2)

fv(3)

fv(4)

fv(5)

£,(,(3) = 0.005
(-1)(.05) .

£2)E2) + LOX,(3) = 0.080
(16 + (4)(05)

L) + £B)ER) + L@)3) = 0290
(13 + (4X6) + (A4).05)

LRLO) + LB + L@LQR) + LO)EB) = 0370
CIX0S) + (4)(3) + (4).6) + (1)(.05)

L3O + L,®,(1) + L)) = 0200
(4)05) + (4)(3) + (1)(6)

£@)E0) + L5, (1) = 0.050
(4).05) + (1)3)

£(5)£,(0) = 0.005

(.1)(.05)

Fv(-2)
Fu(-1)

Fv(0)
Fy(1)
Fv(2)
Fv(3)
Fv@)

Fv(5)

= 0.000
= 0.005

= 0.085

= 0375

= 0.745

= 0.945

= 0.995

1.000




Table 3

Estimated Logit Equations for Different Flow Levels for

Commercial White Water Boaters

Flow Conditions™® Low High
Constant -1.368" 0418
(0.766) (0.730)

Cost -0.000373 -0.00133™

(0.000436) (0.000423)
Bid 0.00380™" 0.00226™

(0.000944) (0.000732)
Model »* 21.78° 22.16™
n 98 128

* Asymptotic standard errors in (.

* Significance levels * (10%), ** (5%), *** (1%)
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