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 Optimal Temporal Policies in Fluid Milk Advertising

Previous studies that have addressed the optimal allocation of generic advertising
over time have assumed a symmetric demand response to increases and decreases
in advertising (Bockstael, Strand, and Lipton; Liu and Forker; Kinnucan and
Forker).  Consumers, however, do not necessarily respond at the same pace to
increases relative to decreases in advertising.  In this paper, the assumption of a
symmetric demand response is relaxed.  An important question that naturally
arises is: what are the implications of an asymmetric response to advertising for
optimal advertising policies?  This question has not been previously addressed in
the generic commodity promotion literature and has gained only limited attention
in the general marketing literature (Simon, Mesak).

Recent research has shown an asymmetric demand response to fluid milk
advertising in New York City, i.e., demand decreases slowly when advertising is
reduced compared to a relatively rapid expansion in demand when advertising is
increased (Author Publication).  Previous studies have suggested that the
appearance of an advertisement is more likely to be noticed than its absence
(Simon).  Similarly, increased advertising may cause non-users to begin using the
product while the number of users gradually decreases when advertising
decreases.  Both of these effects may lead to an asymmetric demand response to
advertising (see Little for an excellent discussion).

The purpose of the research reported here is to determine optimal temporal
patterns of advertising given an asymmetric demand response to advertising.  To
this end, empirical results of an asymmetric advertising-demand relationship for
fluid milk are used to develop a dynamic optimization model where advertising is
allocated over time so as to maximize the present value of current and future fluid
milk sales.  In addition to the advertising-demand response, commodity prices,
seasonality in demand, and cost of advertising may also impact the optimal
temporal allocation of advertising.  As a result of the asymmetric demand
response, and the possibility of a non-steady state solution, traditional nonlinear
solution procedures have severe limitations.  Therefore, a recursive methodology
is employed to solve the dynamic optimization.  Using this dynamic framework,
the current advertising policy is evaluated, and the optimal temporal allocation of
advertising is determined.  This analysis is applied to generic fluid milk
advertising in New York City.

Optimal advertising strategies may take several forms.  Alternatives
include a uniform advertising policy where advertising is the same in all periods,
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or a pulsing advertising policy where periods of intense advertising are alternated
with periods of low or zero advertising.  Many variations of pulsing advertising
policies exist depending on the shape of the advertising patterns including the
intensity and length of the pulses.

In a study of fluid milk advertising, both the optimal level of total
advertising expenditures, and the optimal allocation of advertising over time are
interesting and important issues.  This analysis, however, addresses only the latter
while assuming total annual advertising expenditures are maintained at historical
levels.  In reality, changing total annual fluid milk advertising expenditures in
New York City would require either decreasing or increasing fluid milk
advertising elsewhere, or changing the total funds allocated to advertising.

Previous Research

There have been few studies of optimal temporal allocation of advertising in the
generic promotion and advertising literature.  Kinnucan and Forker allowed
seasonal variation in the demand response to advertising and found that farmer
returns from fluid milk advertising in New York City were maximized when
advertising expenditures followed a regular seasonal pattern.  They concluded that
annual advertising should be allocated as 30, 25, 20, and 25 percent for the four
quarters of each year, respectively, and following this pattern would have
increased demand by approximately 0.8 percent over the period 1972 to 1980.  In
another study, Liu and Forker used an optimal control framework to choose the
optimal path of advertising, which maximized the discounted revenue stream
from farm milk revenue less advertising costs.  Liu and Forker also found that
advertising should be more intense during the winter and less intense in late
spring and early summer.  The gains in demand quantity from a reallocation of
advertising in Kinnucan and Forker, and Liu and Forker were modest while the
increase in returns to farmers was larger.  The optimal seasonal advertising
pattern is driven, in large part, by seasonal variation in the milk blend price1 paid
to farmers (Liu and Forker).  In other words, these studies suggest that
reallocating advertising to increase demand when the farm-level milk price is
highest during the year can increase returns to farmers.  Both studies assumed the
demand response to advertising is symmetric.

The study of optimal temporal advertising has gained limited attention in
the general marketing literature.  Sasieni, who also assumed a symmetric
advertising-demand response, showed that with decreasing returns to scale
(concave advertising-sales response function), the uniform advertising policy is
optimal.  This follows from the fact that the marginal return to advertising
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decreases as advertising increases, and it is better to allocate advertising evenly
over all periods (at higher marginal returns) than use advertising pulses.

Several empirical marketing studies, however, have shown that pulsing
advertising policies are superior to uniform advertising policies.  Using controlled
experiments, Ackoff and Emshoff tested a pulsing advertising strategy for
Budweiser beer as a means to reduce advertising expenditures and found pulsing
resulted in increased sales of beer relative to a uniform advertising strategy.  Rao
and Miller discovered evidence of increasing marginal returns to advertising at
low levels of advertising for several Lever brands.  As a result, they also found
pulsing advertising to be more effective in increasing sales than uniform
advertising.

Although some marketing tests have shown pulsing to be more effective
than a constant level of advertising, advertising models have had difficulty
explaining this phenomenon.  To our knowledge, only two studies have
investigated in depth the relationship between an asymmetric advertising-demand
response and optimal advertising strategies.  Simon, in a seminal paper, addressed
this issue by proposing a simple model of an asymmetric sales response to
advertising, where an increase in advertising resulted in an immediate increase in
sales above the long-term equilibrium sales level.  In the periods following the
increase in advertising, sales gradually declined to a long-term level above the
sales level before the increase in advertising but below the sales level immediately
following the increase in advertising.  Simon found empirical evidence of this
form of asymmetry for several proprietary brands.  By incorporating this
asymmetry into a simple optimization model and investigating the marginal
conditions, a pulsing advertising policy was found to dominate a uniform
advertising policy in terms of sales.  Mesak further developed Simon’s asymmetry
approach and rigorously demonstrated that pulsing is superior when the
advertising response is asymmetric and the discount rate is small.

In a generic commodity promotion study, Bockstael, Strand, and Lipton
used a dynamic bioeconomic model of the Maryland oyster industry and found
that a pulsing advertising strategy is optimal.  In this case, however, the optimal
pulsing strategy did not arise from an asymmetric response to advertising, but
from initial conditions and the cyclical behavior of the fish and capital stocks.
Based on the empirically estimated model, advertising was found to be more
effective when oyster stocks were high and oyster prices low. Bockstael, Strand,
and Lipton concluded that producers would initially benefit from an optimal
advertising policy consisting of three years of zero advertising, followed by five
years of fairly intense advertising, followed by two years of zero or low
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advertising, followed by four years of intense advertising, followed by constant
advertising in all future periods.  However, convincing promotion program
managers to follow an advertising strategy with such long cycles would likely be
difficult.

While gradient-type procedures such as those commonly used in nonlinear
optimization routines are very efficient, such procedures have limitations when
the objective function is discontinuous, not continuously differentiable, or not
strictly concave.  A recursive numerical approach, which is robust to these
limitations, is used in this study since asymmetric functions are not continuously
differentiable.  A detailed discussion of the recursive approach and examples are
available in Stokey, Lucas, and Prescott.

The impacts of an asymmetric advertising demand response on the optimal
advertising policy have not been considered in previous generic commodity
promotion research.  Accordingly, a contribution of the research reported here is
the determination of the optimal pulsing or uniform advertising policy when the
demand response to advertising is asymmetric.  Furthermore, given the non-
continuously differentiable nature of asymmetric functions, a methodological
contribution of this paper is the use of an alternative procedure to solve the
dynamic optimization and determine the optimal advertising policy.

Model

We assume generic advertising program managers attempt to maximize the
current and future revenue for a commodity by choosing the level of advertising
in each period.  This can be represented by maximizing the present value of all
current and future revenue subject to the amount of funds available for advertising
expenditures.  A fixed level of funds is assumed to be made available for
advertising each month.  These funds, which are earmarked for advertising, can
be spent on purchasing advertising in the same month they are received, or can be
saved for use in future months.

Mathematically, a promotion program’s objective function can be
expressed as

∑
∞

=

=
0tt

tt
t qpv β , (1)

where v  is the present value of all current and future revenue, tp  is the farm level

price of fluid milk, and β  denotes the discount rate.  The fluid milk demand in
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month t, tq , depends on a number of demand shifters including current and past

advertising expenditures, ...,,, 21 −− ttt aaa .

The expenditures on advertising each month are constrained by the funds
available for advertising including savings from previous months and an upper
bound on advertising.  The upper bound on advertising represents the maximum
amount of advertising that a promotion manager would purchase in a specific
month.  The constraints on savings, ts , and advertising can be written as:

ttt absrs −++=+ )1(1 , (2)

aat ≤≤0 , and (3)

01 ≥+ts , for ...,2,1, 000 ++= tttt  (4)

where b denotes the fixed level of funds provided for advertising each month and
r is the real rate of interest.  Next period savings is computed by adding current
period savings plus interest to the fixed monthly level of funds provided for
advertising, minus the amount spent on advertising in the current period (equation
2).  Equation (3) requires the advertising level to be nonnegative and to not

exceed the upper bound on advertising.  The parameter, a , denotes the upper
bound on advertising that could be purchased in one month without possibly
inducing consumer advertising fatigue among target audiences.  Also large
advertising purchases during the targeted time slots in one month could reduce the
availability for other advertisers and potentially “bid up” the price of advertising.
Savings is assumed to be nonnegative, i.e., advertising expenditures cannot be
borrowed from future months.  Advertising costs are implicitly assumed to be
constant in the above specification.

Combining equations 2 and 4 gives bsra tt ++≤ )1( , which constrains

advertising expenditures in month t to be less than or equal to total funds available
for advertising.  Given starting values 

0t
s  and 10 −ta , 20 −ta ... at current period 0t ,

the problem is to choose advertising levels in all current and future months,
∞
= 0

}{ ttta , that maximize the present value of all current and future fluid milk

revenue (equation 1) subject to the feasibility conditions (equations 2-4).

We adopt a previously estimated demand function that allowed for
asymmetry in the demand response to fluid milk advertising (see Author
Publication for details).  Advertising goodwill (Nerlove and Arrow) for milk (M)
and carbonated beverages (C) are measured as
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where at s−
l  is the average daily per capita real advertising expenditures in month

t-s for commodity l , and l
sw  are the empirically estimated weights which reflect

the accumulation and decay of goodwill depending on current and past
advertising.

To estimate the impacts on demand of increases and decreases in generic
milk advertising separately, advertising goodwill was segmented into increasing
and decreasing parts as
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respectively.  Per capita fluid milk demand was estimated as:
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(5)
where tq  is average daily per capita quantity of fluid milk demand in month t;

Pt
M  is the retail price of a half gallon of whole milk; I t is per capita food and

beverage expenditures in the Northeast; Pt
C  is the U.S. price index for carbonated

beverages; X t
A  is the percent of the population in New York City who are

African American; X t
H  is the percent of the population in New York City who

are Hispanic; and junD , julD , augD are dummy variables for the summer months

including June, July, and August respectively, and t-statistics are given in
parenthesis.

A contribution of equation (5) is that asymmetry in the demand response
to advertising is permitted by the separate impacts on demand of increases in
goodwill and decreases in goodwill.  Estimates also included 049.010 −== DD αα

(-2.02), 034.032 −== DD αα  (-1.79), and 03210 ==== IIII αααα , and advertising

goodwill for fluid milk was found to depend on the current and past seven months
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of advertising.  Symmetry of the advertising impact on demand
)4,...,0for:( 0 == iH I

i
D
i αα  was tested and soundly rejected concluding that

fluid milk demand in New York City responds in an asymmetric manner to
advertising.  As the coefficients suggest, demand was found to react more rapidly
to increases in advertising goodwill compared to decreases.  Since this analysis
focuses on the impact of fluid milk advertising on demand, the empirical result
that 4,...,0,0 == iI

iα  can be used to collapse the demand equation to

t
i

D
it

D
i

M
tAt WZAq Φ++= ∑

=
−

3

0

)ln()ln( αβ , (6)

where 049.0=Aβ  and tWΦ  represents the factors impacting fluid milk demand

other than milk advertising.

Devising a general optimal temporal strategy for future fluid milk
advertising is a goal of this study.  To this end, all exogenous demand shifters
were assumed to remain constant at their mean monthly values computed over the
sample period of January 1985 to June 1995.  Prior to 1996 when the dairy
support price was binding, a clear seasonal pattern existed in farm-level milk
prices; however, more recently a seasonal pattern in farm-level milk prices has
not been apparent.  Given that future milk prices would be difficult if not
impossible to predict, the real fluid milk price, tp , was held constant at its sample

mean, which is denoted as p.

There are several variations of an optimal temporal strategy for fluid milk
advertising.  The dynamic problem defined in (1) through (4) could result in a
steady state solution where *aat =  for all periods beyond the initial convergence

from the starting values.  This describes a uniform advertising policy.  Another
possibility is a pulsing policy in which case a steady state solution would not
exist.  The optimal policy depends on the relationship between advertising and
demand described in (6).

By evaluating (1)-(4) and (6), one can gain some insights on the optimal
advertising strategy and the approach to obtain the optimal strategy.  Because of
the asymmetric nature of the advertising response, the impact of advertising on
demand will depend on whether advertising goodwill is increasing or decreasing.

Based on the empirical results reported above, 7,...,0, ==
∂

∂ + ll
l w

a

A

t

t .  Also

define an index function as:
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then the partial derivative of demand with respect to advertising goodwill is:
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In addition, the impact of advertising in period t on the present value of current
and future demand is:
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If we assume constraints (3) and (4) are nonbinding, and substitute constraint (2)
into (1), the first order necessary condition is:
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This is the familiar optimality condition, where the marginal benefit of an
increase in advertising in period t is equal to the discounted marginal benefit of
saving and spending the advertising funds in period t+1.

In order to use a typical gradient-type approach to solve for the optimal
advertising level, (8) must be continuous.  From (7), however, it is clear that this
condition is not satisfied.  Although the demand function is continuous, it has
kinks, and therefore the first order necessary condition (equation 8) is not
continuous everywhere.   As a result, traditional solution procedures such as those
used by Bockstael, Strand, and Lipton, and Liu and Forker have severe limitations
when applied to this problem.  We turn to an alternative approach.
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Recursive Approach

The dynamic problem presented in equations (1) through (4) can also be written
as a functional equation,

)},(),({max),( 11,1 tttt
a

tt svWapqsv
t

aaa +−− += β (9)

subject to the constraints (2)-(4) where )...,,,,( 123211 −−−−− = ttttt aaaaa .  The

solution to this problem consists of a value function, RR →13:v , and a
corresponding policy function, RR →13:h .2  For any starting values for ts  and

1−ta , ),( 1−ttsv a gives the maximum present value of all current and future

demand, and ),( 1−ttsh a  gives the optimal advertising level that satisfies (9) (i.e.

),( 1−= ttt sha a ).  Using ttt absrs −++=+ )1(1 , the policy function can be applied

iteratively to determine the entire future path of advertising for starting values ts

and 1−ta .  Under the condition that feasible demand, )(⋅q , is bounded, the

equivalence between the problem stated in (1) and the problem stated in (9) is
established by Stokey, Lucas, and Prescott (p. 39).

The recursive formulation is more general than an approach that uses the
first order necessary conditions since it does not require the objective function to
be continuously differentiable.  In addition, the recursive methodology can be
used to solve problems that may be characterized by non-steady state solutions,
which is a possibility in our case if pulsing is an optimal advertising strategy.
This approach is not new and is employed in a variety of economic research
including real business-cycle research (see Cooley for a discussion and
examples).

Although the functional form of the demand function, )(⋅q , is known, the
functional form of )(⋅v  is not known and, as is frequently the case, cannot be
determined analytically.  The commonly used approach for determining )(⋅v is the
method of successive approximations (Stokey, Lucas, and Prescott).  A finite grid
over ts  and 1−ta  is defined, and an initial guess of )(⋅v , )(0 ⋅v , is chosen (e.g.

00 =v  for all ts  and 1−ta ).  Then, the next estimates of )(⋅v  are defined

iteratively,

...,2,1,0)},,(),,({max),( 111 =+= +−+ nsvWapqsv ttntt
a

ttn
t

aaa β , (10)
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for all values of ts  and 1−ta .

The sufficient conditions for convergence of )(⋅nv  to )(⋅v defined in (10)

include continuous constraints that define a nonempty and compact valued
feasible set, )(⋅q  bounded and continuous over the feasible set, and 10 << β .
These conditions are fully met in this problem.  A proof of the convergence of

)(⋅nv  for a general case can be found in Stokey, Lucas, and Prescott (p. 79) and is

not restated here.

If ),,( 1 Waq tt −a  is strictly concave in ta  and ta , the policy function

),( 1−ttsh a  is a continuous single valued function (Stokey, Lucas, and Prescott, p.

81).  One can observe from (5) that demand is concave in ta , but demand can be

concave, convex, or neither with respect to ta .  When advertising goodwill is

declining, the curvature of demand with respect to past advertising is data
dependent because of the extended carryover effect of advertising.  However,
when advertising goodwill is increasing (current and recent advertising is higher
than past advertising), the asymmetric effect does not exist ( 3,...,0,0 ==− iZ D

it ),

and as a result, demand is strictly concave with respect to advertising.  Therefore,
at high levels of current and recent advertising, demand is strictly concave with
respect to advertising, and in periods of low or zero current or recent advertising,
the curvature of demand cannot be determined a priori.  While the concavity of

),,( 1 Waq tt −a  with respect to ta  is not guaranteed by the functional form as

discussed above, many starting values were attempted and all resulted in identical
long-term solutions.

Optimization Procedure

Although not a complicated procedure, solving for the value function, )(⋅v , was
computationally intensive.  The lagged advertising levels are state variables in this
dynamic optimization problem.  As a result, this analysis encountered the full
brunt of the well-known “curse of dimensionality.”  The value function was
defined on a grid of the state variables, ts  and 1−ta , and linear interpolation was

used to evaluate ),( 1 ttn sv a+  at values of 1+ts  and ta  between the grid points.  In

the optimizations, )(⋅nv  was defined over six equidistant values of savings, ts ,

and five equidistant values for each current and past advertising variable in ta .

Details on this approach and other finite element techniques are provided in Judd.
Interpolation allows the right hand side of (10) to be continuous in ta , and a
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bisection procedure (Press et al.) was used to solve for ta  that maximizes the

value function.

In the optimizations, the discount rate, β , was set to 0.995, which is 0.5
percent monthly or approximately 6 percent annually.  The real monthly interest
rate, r, was set to 0.0025 or 3 percent per annum, which is the average real rate of
return on six month treasury bills in the past decade.  Also, the level of real
expenditures available for advertising each month, b, was $851 per day per
million people.  This value is the average real expenditure on actual fluid milk
advertising in the sample period January 1986 to June 1995.  The units of ts  and

1−ta  were also in terms of real expenditures per day per million people.

Although the grid of state variables was fairly coarse, iterating over all
possible values of ts  and 1−ta  in equation (10) was very computationally

intensive.  To reduce computational requirements, the effects on goodwill of
advertising six and seven months in the past were approximated by a geometric
lag (Greene) as follows,

M
t

s

M
st

M
s

M
t EawA += ∑

=
−

4

0

, where

M
t

MM
t

M
t awEE 551 −− += λ  and 2415.0=λ .

Additional details of the approximation are provided in an appendix, and the
resulting implicit values for 6w  and 7w  are shown to be very close to the

empirically determined weights.  This approximation reduced the number of state
variables and significantly improved the computational feasibility of the
optimization.

The procedure for solving for the optimal value function is
straightforward.  First, the beginning value function, )(0 ⋅v , was set to an initial

guess.  Next, equation (10) was solved for all feasible ts  and 1−ta  to get )(1 ⋅v .

Again, using (10), )(2 ⋅v  was determined, and this process was repeated until the

iterations converged.  Convergence occurred when the distance between )(⋅nv  and

)(1 ⋅−nv  over all ts  and 1−ta  was very small or zero.  At this point, the converged

value function was the optimal value function that solved (9).  The optimal policy
function, ),( 1−ttsh a , was determined at the same time and was given the value of
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the optimal advertising level in period t when savings was ts  and past advertising

was 1−ta .3

A number of optimizations were performed to determine the optimal
advertising policy for fluid milk in New York City and test the sensitivity of the
results to various assumptions.  The main optimizations were performed with and

without an upper bound on monthly advertising, a .4  Similar to Bockstael, Strand,
and Lipton and as discussed earlier, the upper bound on advertising represents the
maximum amount of advertising that can be spent in one month.  Based on
consultations with fluid milk advertising managers in New York, increasing
advertising levels more than 300 percent may result in consumer fatigue from
repetitive advertising, especially among target audiences in the television media
market.  Also large advertising purchases during limited time slots could increase
the price of advertising.

The optimal advertising policy was determined for three possible upper
bounds on advertising including two times, two and one-half times, and three
times the historical average advertising level.  To better understand the specific
relationship between advertising and demand, results were also obtained when the
upper bound on monthly advertising was removed.5  The optimal advertising
policies for these four optimizations were compared to the results from two
additional advertising policies.  These two include a uniform advertising policy,
where advertising was held constant at b every month, and the actual advertising
policy for the period January 1986 to June 1995.  It is important to note that the
sum of real advertising expenditures over time is the same for all advertising
policies.

Careful analyses should evaluate the sensitivity of the optimal advertising
policies to any assumptions. Therefore, sensitivity of the results to demand
seasonality and changes in the advertising grid were investigated.  Also several
additional optimizations were performed to evaluate the impact of changes in
asymmetry on the optimal advertising policy.  These exercises are discussed in
detail in the results.

Fluid milk advertising from July 1994 to June 1995 (denoted as periods
one through twelve in the optimizations) was used as the starting values for
advertising, 12a .  Also, the starting value for savings, that is, savings in period

one, was set to zero ( 01 =s ).  For each optimization, the optimal policy function
was used to determine the optimal fluid milk advertising and the corresponding
fluid milk demand for one hundred months beginning in month thirteen.  Using
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the same starting values, fluid milk demand was also determined for the uniform
and the actual advertising policies.

Results

Optimal Advertising Policies

Figure 1 shows the uniform advertising policy and the actual advertising policy.
The four optimal advertising policies, which were obtained using the recursive
optimization procedure described above, are shown in figure 2.  The sum of real
advertising expenditures over months is the same for all six advertising policies.
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Figure 1.  Advertising Expenditures for the Uniform and Actual 
                Advertising Policies
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 In the uniform advertising case, advertising was constant at $851 per
million people per day after the initial twelve months of starting values.  The
average daily advertising for January 1986 to June 1995 was used after the
starting values in the actual advertising policy.  One can observe that the actual
advertisingexhibits some pulsing, especially between months 73 and 98 (January
1992–January 1994) where a pattern of two months of low advertising followed
by one month of high advertising is prevalent.

The first optimization (top panel of figure 2) shows the optimal
advertising policy when maximum advertising was two times the historical

average advertising level ( 702,1$=a ).  A clear “steady cycle” emerges where,
after the initial convergence from the starting values, the optimal policy is three
months of zero advertising followed by three months of advertising at the

maximum level, a .  Convergence to this pulsing strategy is relatively short—by
the twenty-seventh month, the optimal advertising pattern has already emerged.
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Figure 2.  Optimal Feasible Advertising Expenditures 



15

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51 61 71 81 91 101 111

Month

A
dv

er
ti

si
ng

 p
er

 d
ay

 p
er

 m
ill

io
n 

pe
rs

on
s 

($
)

$2,553aWhenPolicygAdvertisinOptimal =

Figure 2.  Optimal Feasible Advertising Expenditures (continued) 
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The second and third optimal advertising policies, also shown in figure 2, exhibit
similar pulsing patterns.  In the second optimal advertising policy, where the
maximum advertising level was $2,128, the stable pattern includes four months of

zero advertising followed by two months of advertising at a , followed by one
month of adverting at $1,731.  The third optimal advertising policy, where the
maximum advertising level was $2,553, consists of two alternating seven-month
cycles.  The stable pulsing pattern shows four months of zero advertising

followed by two months of advertising at a , followed by one month of
advertising at zero or $1,769, depending on the cycle.

In the fourth optimal advertising policy, also shown in figure 2, where the
upper bound on monthly advertising was removed, the optimal pulsing pattern
consists of five months of zero advertising followed by one month of advertising
at $5,138.  While this result may not be unrealistic, it should be treated with
caution since the pulse of advertising is significantly outside the range of the data,
and the error associated with the corresponding fluid milk demand may be very
large.  Moreover, as discussed earlier, large purchases of advertising during the
targeted time slots in one month could potentially drive up the price of
advertising.

The optimal advertising policies show advertising to be a periodic function
of time, i.e. )()( ktata −=  for a given period (length of cycle in periodic
function) k and for all months t after convergence.  While the total cycle length
for the first optimal policy was six months, the cycle length is seven months for
the second optimal policy and an alternating seven month cycle for the third
optimal policy.  Similar to the first, the fourth optimal policy shows a six-month
cycle length.  All four optimizations show a clear convergence to a pulsing
strategy.

Sensitivity Analyses

In the first set of several sensitivity analyses, seasonality in demand was
incorporated into the four original optimization problems.  In these optimizations,
a separate value function was specified for every month of the year and the
coefficients on the summer dummy variables for June, July, and August in the
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fluid milk demand function were explicitly incorporated into the problem.6  One
can show from the demand equation that in the summer months when demand is
at a seasonal low, the marginal impact of advertising goodwill on demand is also
at a seasonal low.  While incorporating seasonality into the problem had a small
impact on the value functions, none of the long-term optimal patterns of
advertising found in our original optimizations were affected.  This result is not
entirely surprising since variation in the marginal impact of goodwill on demand
due to seasonality (equation 5) is relatively small compared to the impacts of
asymmetry on the advertising-demand response.

To evaluate the sensitivity of the results to the choice of grid points, the
internal grid points for advertising were shifted up by twenty-five percent of the
distance between the equidistant points for each of the four previously described
optimizations.  Similar to the seasonality results, slight shifts in the grid points
had only small impacts on the value function and no impact on the long-term
optimal patterns of advertising.  In general, the optimal advertising policies were
found to be quite robust to placement of the grid points as long as the distance
between any two points did not become too large.

Finally, to better understand the impact of asymmetry on the optimal
advertising policies, three additional optimizations were completed.  For the
original problem with unbounded monthly advertising, the asymmetry
coefficients, D

iα , i=0,...,3, were reduced in absolute value by twenty-five percent,

fifty percent, and seventy-five percent.  These changes represent a reduction in the
carryover effect of advertising goodwill when goodwill is declining, and also a
corresponding reduction in asymmetry in the demand response to goodwill.

While the optimal pulsing pattern did not change for a twenty-five percent
reduction in the asymmetry coefficients, a fifty percent reduction resulted in a five
month pulsing cycle characterized by three months of zero advertising followed
by one month of advertising at $3,410, followed by one month of advertising at
$857.  A seventy-five percent reduction resulted in a four month pulsing cycle
consisting of two months of zero advertising followed by one month of
advertising at $2,555, followed by one month of advertising at $855.  These
results, which are displayed in figure 3, suggest that as the asymmetric advertising
carryover declines, optimal advertising cycles become shorter and pulses become
more spread out.
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Impacts on Demand

More important than displaying the optimal advertising strategy is the impact of
alternative advertising policies on revenue.  Average daily per capita fluid milk
demand for the six alternative advertising strategies is displayed in table 1.  For
the four optimal advertising strategies, the average fluid milk demand was
computed by averaging demand over the months in a cycle.  For example, in the
first optimization, average demand was computed by taking the mean of demand
over the six-month steady cycle, which is the long-term average demand if the
advertising cycle is continued into the infinite future.  Averaging demand over a
fixed finite time period would bias results depending on where the cycle ended in
the finite period.  For the uniform and actual advertising policies, however,
average demand was computed by taking the mean of demand over the entire time
period beginning after the starting values in month thirteen.

Table 1.  Comparison of Advertising Policies

Advertising Policy
Average Demand Per
Capita Per Day (lbs)

Demand Relative to
Uniform Advertising Policy

Uniform 0.57003
Actual 0.57682 1.2%

Policy 1 ( 702,1$=a ) 0.59433 4.3%

Policy 2 ( 128,2$=a ) 0.59763 4.8%

Policy 3 ( 553,2$=a ) 0.59919 5.1%
Policy 4 (Unbounded) 0.60513 6.2%

While the actual advertising policy performs better than the uniform
advertising policy, the optimal pulsing strategies give significant improvement in
demand over both the uniform and the actual advertising policies.  The occasional
pulsing that occurs in the actual policy likely causes it to dominate the uniform
advertising policy.  By using pulsing strategies, demand is shown to be 4.3 to 6.2
percent greater relative to the results of the uniform advertising policy. The
optimal pulsing advertising strategies are shown to give a 3.0 to 4.9 percent
higher demand compared to the actual advertising policy used in the period
January 1986 through June 1995.  Again, caution must be applied to the results of
the fourth optimal advertising policy since the policy includes advertising
significantly outside the sample advertising data.  Overall, however, these results
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suggest that managers of this program should consider a more systematic and
pronounced pulsing pattern.

The optimal pulsing patterns of advertising found here differ from the
optimal seasonal allocations of advertising proposed by Kinnucan and Forker, and
Liu and Forker.  The results in the latter two studies were heavily dependent on
seasonal farm-level blend prices, whereas in the present study, the optimal
patterns of advertising are driven by the demand response to advertising.

Summary and Conclusion

While most previous studies that have addressed optimal advertising over time
have assumed a symmetric demand response to advertising, this paper determined
the optimal advertising policy when the demand response is asymmetric.  An
analytical framework was developed to evaluate optimal advertising strategies,
where promotion program managers were assumed to maximize the present value
of all current and future fluid milk revenue.  Using the empirical results of a
demand equation obtained from Author Publication, the optimal temporal
allocation of advertising was determined.

Due to the asymmetric nature of the demand response to advertising, the
demand function for fluid milk is not continuously differentiable.  As a result,
traditional gradient-type solution procedures could not be used to solve the
dynamic problem.  An alternative, more robust recursive approach was employed
to solve for the optimal advertising policy.

As an application to fluid milk demand in New York City, this study
suggests that, while holding total advertising expenditures unchanged, a pulsing
advertising policy is significantly more effective at increasing demand than a
uniform advertising policy.  The optimal advertising policy can be characterized
as a six to seven month repeated cycle consisting of several months of zero
advertising followed by several months of intense advertising.

Sensitivity analyses demonstrated that the results are robust to changes in
the specification of the grid on which the value function is defined and also are
not affected by including demand seasonality.  Furthermore, additional
optimizations found that reductions in the asymmetry of the demand response to
advertising resulted in shorter optimal pulsing cycles and less intense advertising
pulses.
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Although a pulsing advertising policy clearly dominates a uniform
advertising policy in this analysis, further research that analytically characterizes
the relationship between demand asymmetry and optimal advertising would be
beneficial.  In order for analytical progress to be made, however, the obstacle of
non-continuous differentiability of asymmetric functions has to be circumvented.
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Appendix

To reduce the dimensions of the dynamic optimization problem, the impact on
goodwill of the advertising six and seven months in the past was approximated by
an geometric lag as follows:
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The value of λ  was chosen so that the implicit approximations for Mw6  and Mw7
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λ  was chosen so that the sum of approximated weights on past advertising equal
the sum of empirically estimated weights.  This implies:
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The fluid milk advertising weights, 12
0}{ =s

M
sw , normalized to sum to one, were

empirically estimated to be 0.001, 0.012, 0.082, 0.255, 0.356, 0.223, 0.063, 0.008,
0.0, 0.0, 0.0, 0.0, and 0.0 respectively (Author Publication).  Using the values for

Mw5 , Mw6 , and Mw7 , λ  equals 0.2415, which was used in the simulations.  As a
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result, the implicit values for Mw6 , and Mw7  are 054.05 =Mwλ  and 013.05
2 =Mwλ

respectively.  These, as suggested earlier, are close approximations to the
empirically estimated values.  Fortunately the geometric lag provides a good
approximation because decreasing the dimensions of the original problem allowed
the problem to become computationally feasible.
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Endnotes

                                               
1 The blend price, which is paid to farmers, is a weighted combination of the prices for fluid milk

and processed dairy products, and the weights depend on the seasonally adjusted percent of raw

milk attributed to fluid consumption.

2 )(⋅h  could be a correspondence.  However, it was not found to be a correspondence in this

study.

3 The solution procedure was written in the C programming language and the optimizations were

solved on a RISC System/6000 running IBM’s UNIX operating system AIX.

4 a  is also measured in units of real expenditures per day per million people.

5 The grid of savings for the first three optimizations was six equidistant points between and

including zero and $5,106.  Tests confirmed that the choice of the maximum savings did not

impact results.  Similarly, the grid of monthly advertising consisted of five equidistant points

between and including zero and the maximum advertising level.  For example, for the second

optimization, the advertising grid was $0, $532, $1,064, $1,596, and $2,128.  For the fourth

optimization, the grid of savings was six equidistant points between and including zero and

$6,808.  The grid of advertising was five equidistant points also between and including zero and

$6,808.

6 In the seasonality optimizations, the grid for advertising was reduced to three equidistant points

to allow computational feasibility.  The seasonality results were then compared to the results
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without seasonality using the same advertising grid.  Although not identical, the results using the

reduced grid were very similar to the results for the original optimizations.


